

Simulated Impacts of Three Decadal Climate Variability Phenomena on Water Yields and Urban Water Security in the Missouri River Basin, U.S.A.

Vikram M. Mehta, Norman J. Rosenberg, and Katherin Mendoza The Center for Research on the Changing Earth System, Catonsville, Maryland, U.S.A.

- What is decadal climate variability (DCV)?
- Importance of the Missouri River Basin (MRB)
- Impacts of DCV phenomena on hydro-meteorology and water yield
- Impacts of DCV Phenomena on urban water security
- Summary

Acknowledgements

NOAA - Climate Program Office - Sectoral Applications Research Program Grants NA06OAR43100681 and NA11OAR4310147

Mehta, Rosenberg, Mendoza

Towards Societally-relevant Climate Prediction Prediction of Climate Impacts on

Water

Food

Energy

Transportation

Public health

Economy

What is decadal climate variability (DCV)?

Mehta, Rosenberg, Mendoza

Observed Pacific Decadal Oscillation Sea-surface Temperature Pattern: 1900 – 2012

How does SST variability influence climate on continents?

 SST variability modulates transfers of heat and water vapor between ocean and atmosphere...

...modulating cloud formation, rainfall, and largescale atmospheric motions...

...influencing water vapor and heat transport to and pressure, temperature and winds over continents...

...resulting in precipitation and temperature variability on continents.

Mehta, Rosenberg, Mendoza

Importance of the Missouri River Basin

Mehta, Rosenberg, Mendoza

The Missouri River Basin

Dependence on the Missouri River for drinking water, irrigation and industrial needs, hydro-electricity, recreation, navigation, and fish and wildlife habitat

Mehta, Rosenberg, Mendoza

Increasing Urbanization in the Missouri River Basin

Mehta, Rosenberg, Mendoza

Mehta, Rosenberg, Mendoza

Impacts of DCV phenomena on hydro-meteorology and water yield in the MRB

Mehta, Rosenberg, Mendoza

Center for Research MRB USGS Gauged Streamflow (1950-2000)

CRCES

PDO: Pacific Decadal Oscillation TAG: Tropical Atlantic Gradient N: Northern Missouri River Basin S: Southern Missouri River Basin

Impacts of extrema of PDO, TAG, and WP combine to create droughts (floods?) in the MRB.

Mehta, Rosenberg, Mendoza

SWAT Water Yield Changes in PDO Phases

anging Earth Sy **Positive phase** of PDO: More precip., cooler temperatures, and higher water yields

e center for Researcy

CRCES

Negative phase of PDO: Less precip., warmer temperatures, and lower water yields

SWAT Conference; Toulouse, France

17 July 2013

Mehta, Rosenberg, Mendoza

Simulation of DCV Impacts on Missouri River Basin Water Yield with SWAT

Percent change from climatology

50-60% change in individual locations; substantial impacts of tropical Atlantic and west Pacific Warm Pool variabilities also

Mehta, Rosenberg, Mendoza

Impacts of DCV phenomena on urban water security in the MRB

Case study of climate variability impacts on water security in three urban areas: Great Falls, Montana (small); Lincoln, Nebraska (medium); and Kansas City, Missouri and Kansas (large)

Data analysis and simulation of impacts with SWAT

The Great Falls Water System

Aerial view of Great Falls and the Missouri River

Number of people Served: 64,000

Number of water Connections: ~21,000

Daily maximum delivery Capacity: 56 million gallons

Mehta, Rosenberg, Mendoza

Mehta, Rosenberg, Mendoza

SWAT Conference; Toulouse, France

17 July 2013

Great Falls Water Consumption; and SWAT-simulated Water Yield, Ground Water, and Evapotranspiration: 1996 - 2010 June – July - August

water consumption and SWAT-simulated water variables

Mehta, Rosenberg, Mendoza

SWAT Conference; Toulouse, France

17 July 2013

Great Falls Water System Electricity Usage; and SWATsimulated Water Yield, Ground Water, and Evapotranspiration: 1996 - 2010

Good agreement between observed electricity consumption and SWAT-simulated water variables

Mehta, Rosenberg, Mendoza

The Lincoln Water System

Number of people served: 263,000 Number of water connections: 79,187 Daily maximum delivery capacity: 100 million gallons

Aerial view of Lincoln

Number of customers

Mehta, Rosenberg, Mendoza

17 July 2013

Mehta, Rosenberg, Mendoza

| SWA1 Conference; Ioulouse, France

17 July 2015

Summary

- Several major patterns of decadal climate variability (DCV).
- Substantial associations between hydro-meteorological anomalies in the Missouri River Basin (MRB) and DCV patterns.
- Hydro-met. anomalies associated with realistic values of the DCV indices applied to SWAT show substantial sensitivity of water yields in the MRB to DCV phenomena.
- Good agreement between observed water consumption and other associated variables measured by Great Falls and Lincoln urban water systems, and SWAT-simulated water variables.
- SWAT can be used to predict climate variability impacts on urban water security given skillful climate prediction.

Mehta, Rosenberg, Mendoza

Thank you!!

missouri.crces.org

Mehta, Rosenberg, Mendoza

Observed Tropical Atlantic SST Gradient Variability Pattern: 1861 – 2010

Cross-equatorial SST gradient points south-tonorth or northto-south for a few years to a decade

Substantial SST anomalies (°C) associated with one standard deviation in the time series below

Observed West Pacific Warm Pool Average SST Pattern

Average Warm Pool SSTs (°C)

Tropical Warm Pool definition: SST above 28.5°C

Substantial increase in atmospheric convection and clouds when SST above 28.5°C

Mehta, Rosenberg, Mendoza

Observed West Pacific Warm Pool SST Anomaly Time Series

Original and detrended time series

Indo-Pacific Warm Pool becoming warmer over the last 50 years; also, multi-year to decadal variability

Mehta, Rosenberg, Mendoza

Great Falls Water Consumption; and SWAT-simulated Water Yield, Ground Water, and Evapotranspiration: 1996 - 2010

Lenter for Research

CRCES

