CHAPTER 33

SWAT INPUT DATA: .OPS

The Scheduled Management Operations (.ops) file is an optional file which allows the simulation of non-reoccurring management related activities. The .ops file is particularly useful to initialize conservation measures midsimulation. After their initialization, the practices remain in effect for the remainder of the simulation. The day and relevant operational parameters must be specified. Several conservation measures such as grassed waterways and filter strips are only available through the .ops file.

33.1 SCHEDULED MANAGEMENT OPERATIONS

SWAT will simulate 8 different types of management operations. The first four variables on all management lines are identical, these set the date and operation number. If the date is blank, the operation will be scheduled for the first day of the simulation. The remaining ten variables are operation specific. The type of operation simulated is identified by the code given for the variable MGT_OP.

The different codes for MGT_OP are:

- **terracing operation:** this operation simulates a terrace to the HRU on the specified day
- **tile drainage:** this operation simulates a tile to the HRU on the specified day
- **contouring:** this operation simulates a contour to the HRU on the specified day
- **filter strip**: this operation simulates a vegetative filter strip to the HRU on the specified day
- **strip cropping:** this operation simulates strip cropping to the HRU on the specified day
- **fire:** this operation simulates fire to the HRU on the specified day
- **grassed waterways:** this operation simulates grassed waterways to the HRU on the specified day
- **plant parameter update:** this operation updates crop parameters to the HRU on the specified day
- **residue management:** this operation restricts tillage to maintain the specified minimum residue
- **generic conservation practice:** this operation applies user specified conservation practice efficiencies by constituent.

For each year of management operations provided, the operations must be listed in chronological order starting in January.

33.2.1 TERRACING

A terrace is an embankment within in a field designed to intercept runoff and prevent erosion. A terrace is constructed across slope on a contour. A field generally contains several regularly spaced terraces. Terracing in SWAT is simulated by adjusting both erosion and runoff parameters. The USLE Practice (TERR_P) factor, the slope length (TERR_SL) and curve number (TERR_CN) are adjusted to simulate the effects of terracing. Appropriate curve number for terraced field can be found in Table 20-1. TERR_P values based on field slope are given in Table 33-1. TERR_SL should be set to a maximum of the distance between terraces.

Table 33-1 Universal Soil Loss Equation crop Practice (P) factors derived from Haan et al. (1994).

Slope range		
Condition	(%)	P factor
Strait Row	0-25	1.00
Contour	0-2	0.90
Contour	2-5	0.80
Contour	5-8	0.70
Contour	8-12	0.60
Contour	12-16	0.50
Contour	16-20	0.50
Contour	20-25	0.60
Terraced	0-2	0.12
Terraced	2-8	0.10
Terraced	8-12	0.12
Terraced	12-16	0.14
Terraced	16-20	0.16
Terraced	20-25	0.18

The variables which may be entered on the planting line are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
MGT_OP	Management operation number.
	MGT_OP = 1 for terracing.
TERR_P	USLE practice factor adjusted for terraces
TERR_CN	Initial SCS curve number II value
TERR_SL	Average slope length (m). Should be set to the interval between terraces.

The format of the terracing operation line is

Variable name	Position	Format	F90 Format
MONTH	space 2-3	2-digit integer	i2
DAY	space 5-6	2-digit integer	i2
IYEAR	space 12-15	4-digit number	i4
MGT_OP	space 17-18	2-digit integer	i2
TERR_P	space 36-47	decimal (xxxxxx.xxxx)	f12.5
TERR_CN	space 49-54	decimal (xxx.xx)	f6.2
TERR_SL	space 56-66	decimal (xxxxx.xxxxx)	f11.5

33.2.2 TILE DRAINAGE OPERATION

Tile drains remove excess water for an area to optimize plant growth. Drains may be added at the beginning of the simulation in the .mgt file. To account for the installation of tile drains mid-simulation, the option was included as a schedulable operation. The variables which may be entered on the irrigation line are listed and described below

Variable name	Definition	
MONTH	Month operation takes place. (Required)	
DAY	Day operation takes place. (Required)	
IYEAR	Year operation takes place. (Required)	
MGT_OP	Management operation number.	
	$MGT_OP = 2$ for tile drainage.	
DRAIN_D	Depth to the sub-surface drain (mm)	
DRAIN_T	Time to drain soil to field capacity (hours)	
DRAIN_G	Drain tile lag time. The amount of time between transfer of water from the soil to the drain tile and the release of the water from the drain tile to the reach (hours)	
DRAIN_IDEP	Depth to impermeable layer (mm) $Default = 6000.0$	

The format of the tile drainage line is

Variable name	Position	Format	F90 Format
MONTH	space 2-3	2-digit integer	i2
DAY	space 5-6	2-digit integer	i2
IYEAR	space 12-15	4-digit integer	i4
MGT_OP	space 17-18	2-digit integer	i2
DRAIN_D	space 36-47	decimal (xxxxxx.xxxx)	f12.5
DRAIN_T	space 49-54	decimal (xxx.xx)	f6.2
DRAIN_G	space 56-66	decimal (xxxxx.xxxxx)	f11.5
DRAIN_IDEP	space 68-75	decimal (xxxxx.xx)	f8.2

33.2.3 CONTOUR PLANTING

Contour planting is the practice of tilling and planting crops following the contour of the field as apposed to strait rows. These contours are orientated at a right angle to the field slope at any point. Small ridges resulting from field operations increase surface storage and roughness, reducing runoff and sediment losses. Contour planting is simulated in SWAT by altering curve number (CONT_CN) to account for increased surface storage and infiltration (Table 20-1) and the USLE Practice factor (CONT_P) to account for decreased erosion (Table 33-1). The variables which may be entered on the fertilization line are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
MGT OP	Management operation number.
-	MGT_OP = 3 for contouring.
CONT_CN	Initial SCS curve number II value
CONT_P	Contouring USLE P Factor

The format of the contour planting line is

Variable name	Position	Format	F90 Format
MONTH	space 2-3	2-digit integer	i2
DAY	space 5-6	2-digit integer	i2
IYEAR	space 12-15	4-digit integer	i4
MGT_OP	space 17-18	2-digit integer	i2
CONT_CN	space 36-47	decimal (xxxxxx.xxxx)	f12.5
CONT_P	space 49-54	decimal (xxx.xx)	f6.2

33.2.4 FILTER STRIPS

A filter strip is a strip of dense vegetation located to intercept runoff from upslope pollutant sources and filter it. Filter strips remove contaminants by reducing overland flow velocity which results in the deposition of particulates. The filter strip area also acts as an area of increased infiltration, reducing both the runoff volume and non-particulate contaminants. The filter strip used algorithm used in SWAT was derived from White and Arnold (2009). Filter strips reduce sediment, nutrients, bacteria, and pesticides, but do not affect surface runoff in SWAT. The variables which may be entered on the pesticide application line are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
MGT_OP	Management operation number.
	$MGT_OP = 4$ for filter strips.
FILTER_I	Flag for the simulation of filter strips (VFSI = 1/0 active/inactive).
FILTER_RATIO	Ratio of field area to filter strip area (unitless). Ranges from 0 to 300 with values from 30-60 being most common. Default value is 40
FILTER_CON	Fraction of the HRU which drains to the most concentrated ten percent of the filters strip area. Runoff generated upslope a filter strip is not uniformly distributed across the entire length of the strip. Ten percent of the filter strip can receive between 0.25 and 0.75 of the runoff from the entire filed. Default value is 0.5.
FILTER_CH	Fraction of the flow within the most concentrated ten percent of the filter strip which is fully channelized (dimensionless). Flow which is fully channelized is not subject to filtering or infiltration effects. Default value is 0.0

The format of the filter strips line is

Variable name	Position	Format	F90 Format
MONTH	space 2-3	2-digit integer	i2
DAY	space 5-6	2-digit integer	i2
IYEAR	space 12-15	4-digit integer	i4
MGT_OP	space 17-18	2-digit integer	i2
FILTER_I	space 20-23	4-digit integer	i4
FILTER_RATIO	space 29-34	decimal (xxx.xx)	f6.2
FILTER_CON	space 36-47	decimal (xxxxxx.xxxx)	f12.5
FILTER_CH	space 49-54	decimal (xxx.xx)	f6.2

33.2.5 STRIP CROPPING

Strip cropping is the arrangement of bands of alternating crops within an agricultural field. The bands are generally positioned based on the contours of the field. Strip Cropping is simulated in SWAT by altering the Manning' N value for overland flow (STRIP_N) to represent increased surface roughness in the direction of runoff. Curve Number (STRIP_CN) may be adjusted to account for increased infiltration. USLE Cropping Factor (STRIP_C) may be adjusted to reflect the average value for multiple crops within the field. The USLE Practice factor may also be updated to represent strip cropping conditions. The variables which may be entered on the harvest and kill line are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
MGT_OP	Management operation number.
	$MGT_OP = 5$ for strip cropping.
STRIP_N	Manning's N value for overland flow in strip cropped fields
STRIP_CN	SCS curve number II value for strip cropped fields
STRIP_C	USLE Cropping factor for strip cropped fields
STRIP_P	USLE Practice factor for strip cropped fields

The format of the strip cropping operation line is

Variable name	Position	Format	F90 Format
MONTH	space 2-3	2-digit integer	i2
DAY	space 5-6	2-digit integer	i2
IYEAR	space 12-15	4-digit integer	i4
MGT_OP	space 17-18	2-digit integer	i2
STRIP_N	space 36-47	decimal (xxxxxx.xxxx)	f12.5
STRIP_CN	space 49-54	decimal (xxx.xx)	f6.2
STRIP_C	space 56-66	decimal (xxxxx.xxxxx)	f11.5
STRIP_P	space 68-75	decimal (xxxxx.xx)	f8.2

33.2.6 FIRE OPERATION

Fire may have a significant effect on hydrology which is represented via an adjustment to the curve number (FIRE_CN). Fire in SWAT does not account for biomass reduction due to fire. The variables for the tillage operation are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
MGT OP	Management operation number.
_	$MGT_OP = 6$ for fire.
FIRE_CN	Post fire SCS curve number II value

The format of the fire operation line is

Variable name	Position	Format	F90 Format	
MONTH	space 2-3	2-digit integer	i2	
DAY	space 5-6	2-digit integer	i2	
IYEAR	space 12-15	4-digit integer	i4	
MGT_OP	space 17-18	2-digit integer	i2	
FIRE_CN	space 36-47	decimal (xxxxxx.xxxx)	f12.5	

33.2.7 GRASS WATERWAYS OPERATION

Grassed waterways are vegetated channels which transport runoff from a field. Vegetation within the waterways reduces flow velocities, and protects the waterway from the scouring potential of concentrated flow. These are generally broad and shallow channels; the channel simulated in SWAT has a side slope of 8:1. Grasses waterways trap sediment and other contaminants by reducing flow velocities which increases deposition of particulate contaminates. The variables for the tillage operation are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
MGT_OP	Management operation number.
	$MGT_OP = 7$ for grass waterways.
GWATI	Flag for the simulation of grass waterways ($GWATI = 1/0$ active/inactive).
GWATN	Manning's N value for overland flow. (Default 0.35)
GWATSPCON	Linear parameter for calculating sediment in Grassed waterways (default 0.005)
GWATD	Depth of grassed waterway channel from top of bank to bottom (m). If no value of GWATD is entered, depth is set to 3/64 * GWATW
GWATW	Average width of grassed waterway (m) (Required)
GWATL	Length of grassed waterway (km). If no value for GWATL is entered, length defaults to a single side of a square HRU)
GWATS	Average slope of grassed waterway channel (m). If no value for GWATS is entered, the HRU slope * 0.75 is used.

The format of the grass waterways operation line is

Variable name	Position	Format	F90 Format
MONTH	space 2-3	2-digit integer	i2
DAY	space 5-6	2-digit integer	i2
IYEAR	space 12-15	4-digit integer	i4
MGT_OP	space 17-18	2-digit integer	i2
GWATI	space 20-23	4-digit integer	i4
GWATN	space 29-34	decimal (xxx.xx)	f6.2
GWATSPCON	space 36-47	decimal (xxxxxx.xxxx)	f12.5
GWATD	space 49-54	decimal (xxx.xx)	f6.2
GWATW	space 56-66	decimal (xxxxx.xxxxx)	f11.5
GWATL	space 68-75	decimal (xxxxx.xx)	f8.2
GWATS	space 77-82	decimal (xx.xx)	f6.2

33.2.8 PLANT PARAMETER UPDATE

In modern agriculture, there is significant variability in individual cultivars. The rapid generation and adoption of improved varieties may be problematic in long simulations. The plant parameter update option allows new varieties with differing growth characteristics to be adopted mid-simulation. The variables for the tillage operation are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
MGT OP	Management operation number.
	$MGT_OP = 8$ for plant parameter update.
CROPNO_UPD	Updated crop number
HI_UPD	Updated harvest index
LAIMX_UPD	Updated maximum LAI

The format of the plant parameter update operation line is

Variable name	Position	Format	F90 Format	
MONTH	space 2-3	2-digit integer	i2	
DAY	space 5-6	2-digit integer	i2	
IYEAR	space 12-15	4-digit integer	i4	
MGT_OP	space 17-18	2-digit integer	i2	
CROPNO_UPD	space 20-23	4-digit integer	i4	
HI_UPD	space 36-47	decimal (xxxxxx.xxxxx)	f12.5	
LAIMX_UPD	space 49-54	decimal (xxx.xx)	f6.2	

33.2.9 RESIDUE MANAGEMENT

Residue management is a common conservation practice to prevent excess soil erosion and particulate nutrient losses. This practice is typically implemented by reducing or delaying tillage to maintain surface residue above a specified level necessary to protect the soil. In the model, this component reduces or eliminates soil mixing due tillage operations to maintain soil residue near user specified levels. Tillage operation specified in the .mgt file need not be modified. These operations may or may not occur as scheduled, or may occur with reduced mixing efficiencies depending upon the surface residue prior to each operation and specified SO_RES. Non-tillage processes which reduce surface residue such as biological mixing, fire, and natural decay are not affected.

The variables which may be entered for residue management are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
SO_RES_FLAG	Conservation practice code (range 0-1)
SO_RES	Residue (kg/ha) (range 0-5000.0)

The format of the terracing operation line is

Variable name	Position	Format	F90 Format	
MONTH	space 2-3	2-digit integer	i2	
DAY	space 5-6	2-digit integer	i2	
IYEAR	space 12-15	4-digit integer	i4	
SO_RES_FLAG	space 20-23	4-digit integer	i4	
SO_RES	space 36-47	decimal (xxxxxx.xxxx)	f12.5	

33.2.10 GENERIC CONSERVATION PRACTICE

There are many conservation practices for which approximate removal efficiencies have been established which are unsupported by SWAT or any other

existing model. To allow these practices to be included, this generic conservation practice operation allows fixed removal efficiencies to be specified by constituent. Approximate efficiencies for several practices were derived from Tetra Tech. 2005 and NCTCOG 2006 and are listed below:

Landuse	Description	Nitrogen Reduction (%)	Phosphorus Reduction (%)	Sediment Reduction (%)	Bacteria Reduction (%)
Cropland	Diversion	10	30	35	-
Cropland	Streambank stabilization and fencing	75	75	75	-
Forest	Road dry seeding	-	-	41	-
Forest	Road grass and legume seeding	-	-	71	-
Forest	Road hydro mulch	-	-	41	-
Forest	Road straw mulch	-	-	41	-
Forest	Road tree planting	-	-	50	-
Forest	hydro mulch/seed/fertilizer	-	-	71	-
Forest	hydro mulch/seed/fertilizer/transplants	-	-	69	-
Forest	steep slope seeder/transplant	-	-	81	-
Forest	straw/crimp seed/fertilizer/transplant	-	-	95	-
Forest	straw/crimp/net	-	-	93	-
Forest	straw/net/seed/fertilizer/transplant	-	-	83	-
Forest	straw/polymer/seed/fertilizer/transplant	-	-	86	-
Feedlots	Diversion	45	70	-	-
Feedlots	Runoff Mgmt System	-	82.5	-	-
Feedlots	Solids Separation Basin	35	31	-	-
Feedlots	Solids Separation Basin w/Infilt Bed	-	80	-	-
Feedlots	Waste Mgmt System	80	90	-	-
Feedlots	Waste Storage Facility	65	60	-	-
Urban	Concrete Grid Pavement	90	90	90	-
Urban	Extended Wet Detention	55	68.5	86	-
Urban	Grass Swales	10	25	65	-
Urban	Infiltration Basin	60	65	75	-
Urban	Infiltration Devises	-	83	94	-
Urban	LID/Bioretention	43	81	-	-
Urban	LID/Filter/Buffer Strip	30	30	60	-
Urban	LID/Infiltration Swale	50	65	90	-
Urban	LID/Infiltration Trench	50	50	90	-
Urban	LID/Vegetated Swale	7.5	17.5	47.5	-
Urban	Oil/Grit Separator	5	5	15	-
Urban	Settling Basin	-	51.5	81.5	-
Urban	Weekly Street Sweeping	-	6	16	-
Urban	Wet Pond	35	45	60	-

Urban	Bioretention Areas	50	60	80	-
Urban	Grass Channel	20	25	50	-
Urban	Enhanced Dry Swale	50	50	80	-
Urban	Enhanced Wet Swale	40	25	80	-
Urban	Alum Treatment	60	80	80	90
Urban	Filter Strip	20	20	50	-
Urban	Dry Detention	30	50	65	70
Urban	Organic Filter	40	60	80	50
Urban	Planter Boxes	40	60	80	50
Urban	Sand Filters	25	50	80	40
Urban	Underground Sand Filter	25	50	80	40
Urban	Gravity (Oil-Grit) Separator	5	5	40	-
Urban	Downspout Drywell	60	60	80	90
Urban	Infiltration Trench	60	60	80	90
Urban	Soakage Trench	60	60	80	90
Urban	Storm Water Ponds	30	50	80	70
Urban	Green Roof	25	-	85	-
Urban	Porous Paver Systems	80	80	-	-
Urban	Porous Concrete	65	50	-	-
Urban	Storm Water Wetlands	30	40	80	70
Urban	Submerged Gravel Wetland	20	50	80	70

The variables which may be entered on the generic conservation line are listed and described below.

Variable name	Definition
MONTH	Month operation takes place. (Required)
DAY	Day operation takes place. (Required)
IYEAR	Year operation takes place. (Required)
RO_BMP_FLAG	Code to turn on/off user BMP (range 0-1)(mgt1i)
RO_BMP_SED	Sediment removal by BMP (%) (range 0-100)
RO_BMP_PP	Particulate (Organic) phosphorous removal by BMP (%) (range 0-100)
RO_BMP_SP	Soluble phosphorous removal by BMP (%) (range 0-100)
RO_BMP_PN	Particulate (Organic) nitrogen removal by BMP (%) (range 0-100)
RO_BMP_SN	Soluble nitrogen removal by BMP (%) (range 0-100)
RO_BMP_BAC	Bacteria removed by BMP (%) (range 0-100)

Variable name	Position	Format	F90 Format
MONTH	space 2-3	2-digit integer	i2
DAY	space 5-6	2-digit integer	i2
IYEAR	space 12-15	4-digit integer	i4
RO_BMP_FLAG	space 20-23	4-digit integer	i4
RO_BMP_SED	space 29-34	decimal (xxx.xx)	f6.2
RO_BMP_PP	space 36-47	decimal (xxxxxx.xxxxx)	f12.5
RO_BMP_SP	space 49-54	decimal (xxx.xx)	f6.2
RO_BMP_PN	space 68-75	decimal (xxxxx.xx)	f8.2
RO_BMP_SN	space 77-82	decimal (xxx.xx)	f6.2
RO_BMP_BAC	space 83-87	decimal (xx.xx)	f5.2

The format of the conservation practice operation line is

REFERENCES

Haan, C.T., B.J. Barfield, and J.C. Hayes. 1994. Design hydrology and sedimentlogy for small catchments.

New York: Academic Press.

North Central Texas Council of Governments (NCTCOG). 2006, iSWMTM Design Manual for Site

Development, Available at :http://iswm.nctcog.org/archives-resources.asp.

Tetra Tech. 2005, Spreadsheet Tool for the Estimation of Pollutant Load (STEPL). Available at:

http://it.tetratech-ffx.com/step1web/STEPLmain_files/STEPLGuide310.pdf