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Background

• Main water resource in the central region of Thailand, supplying irrigation and 

maintaining agriculture, also contributing to industrialization (Molle, 2007).

• The river is 372 km long, watershed covers an area of 21,725 km2

• The tidal effect is caused by the mix of enclosed sea and tides around the upper 

Gulf of Thailand (Saramul & Ezer, 2014).
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Study area: Chao Phraya River watershed

Tides in the Chao Phraya River

• The tides caused changes in the river flow rate making it difficult to simulate and 

predict the exact behavior of the river.

•  Predicting and managing the water flow rate through modeling to protect water 

resources is needed.

 Need the improvement of flow rate simulation



Research Objectives

1. To develop the model that coupled SWAT and deep learning model for improving the simulation of 

flow rate in the tidal river due to the lack of tidal consideration in the SWAT model.

2. To investigate the influence of tides on the deep learning model by the model interpretation.
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Study area
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C.35

C.7a

C.44

C.13

Study area: Chao Phraya River watershed

• 4 hydrological stations used as the outlets; C.13 (15°16 E, 100°19 N),             

C.44 (15°01 E, 100°33 N), C.7a (14°59 E, 100°45 N), C.35 (14°36 E, 100°52 N) 

• 6 meteorological stations covered in the watershed.

• Water level was obtained from the Samsean station (13°78 E, 100°50 N) and 
served as the nearest shoreline sampling location along the water flow path before 
it reaches the Gulf of Thailand.

• The data were obtained from 

• Royal Thai Survey Department (RTSD) – Digital Elevation Map

• Land Development Department Thailand (LDD) – Land use, Soil data

• Thai Meteorological Department Thailand (TMD) –  Meteorological data

• Royal Irrigation Department Thailand (RID) – Hydrological data



Meteorological data 
• Daily data (2009 – 2021)
- Max/Min Temperature (°C)
- Wind speed (m/s)
- Relative humidity (%)
- Precipitation (mm/day)

Meteorological data 
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SWAT model
Modeling process

Watershed data
• Watershed
- Digital elevation map
• Hydrological response unit (HRU)
- Land use
- Soil data

Module in SWAT
- Warm up    2009 – 2011
- Calibration 2012 – 2018
- Validation   2019 – 2021

Step 1. Data preparation to build the SWAT model

Step 2. Simulation of the hydrological outputs (flow rate) in the SWAT model

Geospatial data

Module in SWAT
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Watershed data
• Daily Inlet discharge (2012 – 2021)

- Inlet station (15°69 E, 100°13 N)

Monitoring data

Module in SWAT
- Global sensitivity analysis (GSA)

 

Sensitivity analysis Module in SWAT
• SWAT-CUP
- The sequential uncertainty fitting 

algorithm version 2 (SUFI-2)

Multiple-site calibration



SWAT model
Calibrated parameters
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• Calculating the changes of the objective function from each parameter while varying all parameters simultaneously
• Understanding which factors have the most significant impact on the model's behavior or output.

SWAT model
Global sensitivity analysis (GSA)
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Conventional calibration Multi-site calibration

Calibration process The calibration is site-specific.
Considering the spatial variability and interactions 
between different sites.

Parameter estimation
Each site has its own set of optimized 
parameters.

Expected to capture the patterns and processes of the 
entire region.

Complexity
Suitable when the goal is to assess site-specific 
performance

Suitable when capturing the spatial variability and 
regional performance of the model.

Data requirement Site-specific data for each calibration location.
Data from multiple monitoring sites to capture the 
regional patterns and interactions

Differences
Calibration

Conventional calibration & Multi-site calibration



SWAT-LSTM model
Modeling process
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Meteorological data 
• Daily data (2012 – 2021)
- Max/Min Temperature (°C)
- Wind speed (m/s)
- Relative humidity (%)
- Precipitation (mm/day)

Meteorological data Watershed data
• Daily data (2012 – 2021)
- Curve number
- Evapotranspiration
• Static data
- Watershed area
- Watershed elevation

Step 1. Data pre-processing for deep learning model

SWAT characteristics
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Watershed data
• Daily data (2012 – 2021)
- Tidal data
- The nearest water level to 

shoreline 
• Static data
- Distance from shoreline

Tide-related data Module in SWAT
- Seeking the optimal value for the following selections

Step 2. Hyper-parameter optimization (HPO)

Bayesian optimization method

• Units
• Epochs
• Dropout

• Batch size
• Lookback
• Loss function

• Optimizer
• Activation 
       function

Step 3. Simulation of the flow rate using a deep-learning model and model interpretation

Long short-term memory (LSTM)
Input layer

Cell 1 Cell 1 Cell 1 Cell 1

Dense & dropout layerOutput layer

…

Water flow rate

Cell 2 Cell 2 Cell 2 Cell 2

…

LSTM layers

Input

Model interpretation

Meteorological data Meteorological data Watershed dataSWAT characteristics Watershed dataTide-related data

20.5 0.0 12.3 52.1 25.8

0.0 17.1 4.5 19.2 0.0

10 10 10 10 10

11.5 14.5 12.3 17.4 10.4

80 80 80 80 80

2.2 3.1 4.5 1.4 2.610.3 5.6 0.0 0.0 0.0

Daily data Daily data

Static data Static data

Daily data



LSTM model
Model structure
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Forget gate

Output gate

Input gate

Input

Output

Cell State 
Next Cell State 

Next Hidden State 

Forget gate Input gate

Cell state update Output gate

Vector with 0~1 values

Generated matrix with same dimension of hidden layer 

 Bias Concatenated input vector

Decided which values to update

Created a vector of new values
that could be added to the state

Put tanh (-1~1) and determined output

: output coefficient

Decided whichever information should be 
forgotten

Added the decided value to update each state value



Model interpretation
SHapley Additive exPlanations (SHAP) analysis
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Source: Lundberg and Lee (2017)

• The goal of SHAP is to explain the prediction of an 

instance x by computing the contribution of each 

feature to the prediction.

• By quantifying the impact of each feature on the 

output, SHAP allows users to identify the most 

influential features and focus their attention on 

understanding and analyzing those features.

• In this study, we used SHAP to investigate the 

influence of tides on the deep learning model. 
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Sensitivity analysis results

• Among the parameters considered, the groundwater delay time (GW_DELAY), maximum canopy storage (CANMX), and deep aquifer 
percolation fraction (RCHRG_DP) were identified as the three most sensitive factors influencing the simulation of water flow rates.

• The parameter GW_DELAY directly pertains to groundwater dynamics, RCHRG_DP represents a fraction indicating the percolation of 
water through the soil profile, and CANMX serves as a direct indicator of the hydrological response unit's hydrological response.

15

03. Results and Discussion



03. Results and Discussion

SWAT model: multi-site calibration results

• The temporal comparison spanning 10 years between the observed data and simulated outcomes revealed that the SWAT model 
exhibited an underestimation of the flow rate, primarily attributable to the model's lack of consideration for tidal river dynamics.

• The simulation of the SWAT model in the context of a tidal river necessitates the application of alternative approaches   
(Upadhyay et al., 2022).
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C.44

C.7A

C.35

C.13

R2: 0.33 
NSE: 0.11

R2: 0.49 
NSE: 0.09

R2: 0.34 
NSE: 0.11

R2: 0.53
NSE: 0.09

R2: 0.34
NSE: 0.11

R2: 0.51
NSE: 0.09

R2: 0.60
NSE: 0.11

R2: 0.37
NSE: 0.13
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SWAT-LSTM: HPO results

• The loss function employed in the Bayesian optimization method to optimize the model parameters was determined based on a 
7-year dataset, utilizing 30 epochs, and evaluating the mean squared error (MSE) metric.

• Station C.35 stood out from the other stations in terms of the lookback of the LSTM model.

• This distinction highlights the significant influence of 14-day intervals of tides, specifically spring tide and neap tide, on the 
water dynamics observed at this particular station.
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SWAT-LSTM: flow rate simulation results
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R2: 0.94 
NSE: 0.89 

R2: 0.82
NSE: 0.79

R2: 0.86
NSE: 0.86

R2: 0.89
NSE: 0.88

R2: 0.92
NSE: 0.92

R2: 0.92
NSE: 0.89

R2: 0.81
NSE: 0.80

R2: 0.80
NSE: 0.80

C.13

C.44

C.7a

C.35

• The SWAT-LSTM model resulted in improved performance across all models, leading to more accurate and reliable flow rate predictions.

• The overall R2 and NSE values from all stations were higher than 0.80, and 0.79 respectively.



Comparison of the model performance

• The inclusion of SWAT characteristic data and tide-related data in the LSTM model led to notable changes in the Nash-
Sutcliffe Efficiency (NSE) value.

• The utilization of SWAT characteristic data in the LSTM model incorporated to enhance the model's learning capacity by 
capturing relevant patterns and dynamics.
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The importance of input features
• The analysis identified the water 

level at the shoreline as the most 
crucial input feature.

• Changes or variations in water level 
will have a relatively larger impact 
on the model's output compared to 
other features.

• In contrast, the analysis revealed that 
precipitation had the least impact as 
an input feature, its influence on the 
models in the tidal river context was 
relatively minimal compared to 
other factors.
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C.13

C.7a

C.13 C.44

C.7a C.35
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04. Conclusion

Conclusion

Summary

Future Plan

1. A coupled approach combining the SWAT model with LSTM was developed. This integration aimed to mitigate 
the difficulty caused by tidal effects and improve the accuracy of flow rate simulations.

2. The implementation of the SWAT-LSTM model resulted in a significant enhancement of the overall model 
performance.

3. By employing the SHAP, the relative importance was revealed that the water level at the shoreline emerged as the 
most influential input feature, indicating its substantial impact on the model's predictions and overall performance.

1. To further enhance the modeling capabilities and accuracy, other deep learning approaches can be introduced 
in conjunction with SWAT.

2. Considering more with dams, minor outlets, and discharges can indeed contribute to the development of a 
more accurate model. 
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