2025 International SWAT Conference June 25-27 Cheju Halla University, Republic of Korea

# Climate Adaptation and Value Creation of Land and Water for our Life with SWAT

25 June 2025

# SeongJoon Kim

Civil and Environmental Engineering Konkuk University

# Land and Water to Human

- L&W evolving Earth
  - we call our globe of 29% land and 71% water as earth because we live on land
  - we use water from precipitation (weather) and glaciers (climate) for land use
  - we manage water as surface, subsurface, and ground waters (civilization) for land management
  - we **combine** land and water to produce values (industrialization)
  - we maintain land and water for our future (sustainability for next generation)
    - we worry about climate change adaptation (new normal) and weather extremes (flood and drought)
- L&W behaving together and influencing each other
  - they can not be thought separately to human life
  - pioneering to Mars



#### https://artsandculture.google.com/experiment/passage-of-water/dAElpEyEjuE9XQ?hl=en

PASSAGE OF WATER by Yiyun Kang

#### Earth age: 4.54 Byr



### Land- Last Glacial Maximum - 21,000 yr





Holocene - 11,700 ~



### Land and Water to Human

| Theme   | Summary                                                                   |
|---------|---------------------------------------------------------------------------|
| Past    | Land and water were objects of <b>conquest and ownership</b> .            |
| Present | Land and water are now sources of inequality and conflict.                |
| Future  | Land and water will become the ultimate tests of coexistence and survival |

### Land future outlook

- Climate Change Impacts: Desertification and rising sea levels will reduce habitable/agricultural areas.
- Smart Cities and Density: Technology will enable efficient urban land use.
- **<u>Space</u>** Colonization: New concepts of "land" (e.g., Moon, Mars) <u>emerge</u>.
- Tech-Driven Management: Use of drones, AI, and GIS for sustainable land use

### Water future outlook

Task

- Water Scarcity <u>Crisis</u>: Climate change and population growth will <u>increase</u> water stress.
- **Desalination** Advances: Greater adoption as cost drops and efficiency rises.
- The Era of "Blue Gold": Water becoming as geopolitically critical as oil
- More <u>Conflicts</u> Expected: Without international cooperation, disputes may <u>intensify</u>.

Share wisely, cooperate globally, and manage sustainablysmartgovernanceintegration

### Future Directions in the Water Sector

| <u>Category</u> |                                                      | Key Focus Areas                                    | Examples & Technologies                                                                                   |  |
|-----------------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| •               | Digital Twin                                         | Real-time simulation and system modeling           | Virtual replicas of water infrastructure,<br>scenario-based planning, predictive analytics                |  |
| •               | Nature-based Solutions (NbS)                         | Ecosystem-based water management                   | Wetlands, green roofs, riparian buffers, floodplains restoration                                          |  |
| •               | Smart Water Management                               | Intelligent monitoring and control                 | IoT sensors, SCADA systems, AI for demand prediction and leakage detection                                |  |
| •               | Climate <u>Resilience</u>                            | Adaptation to climate risks                        | Flood/drought risk assessments, resilient infrastructure design, early warning systems                    |  |
| •               | Water <u>Reuse</u> & Circular Economy                | Efficient use and recovery of water resources      | Wastewater reuse, rainwater harvesting, resource recovery (nutrients, energy)                             |  |
| •               | Integrated Data & Platforms                          | Unified water data ecosystems                      | Hydrology-GIS integration, open data platforms, cloud-based dashboards                                    |  |
| •               | Participatory <u>Governance</u>                      | Inclusive and transparent decision-making          | Stakeholder engagement, community water<br>planning, ESG/SDG-aligned governance                           |  |
| •               | <b><u>Remote Sensing</u> &amp; Earth Observation</b> | Large-scale and real-time environmental monitoring | Satellite imagery, LIDAR, SAR for hydrological tracking and forecasting                                   |  |
| •               | Sector-specific Water Solutions                      | Tailored strategies for different sectors          | Precision irrigation (agriculture), green<br>infrastructure (urban), zero-discharge<br>systems (industry) |  |

### Future Directions in Water Environment & Aquatic Ecosystem Fields

#### Category **Key Focus Areas Examples & Technologies** Ecosystem-based approaches to enhance Nature-based Solutions (NbS) Green infrastructure, urban wetlands, sponge water and habitat quality cities **Aquatic Ecosystem Health Monitoring** Assessment of biodiversity and ecological Index of Biological Integrity (IBI), integrity macroinvertebrate monitoring, eDNA analysis **River and Wetland Restoration** Ecological rehabilitation of degraded water Re-meandering rivers, reconnecting floodplains, riparian vegetation restoration bodies Reducing pollution and enhancing natural Constructed wetlands, ecological wastewater Water Quality Improvement treatment, nutrient load reduction purification Habitat Connectivity Supporting aquatic organism movement and Fish passages, dam removal/modification, lifecycle ecological corridors **Climate Adaptation in Aquatic Systems** Enhancing resilience of aquatic habitats Thermal refugia creation, low-flow mitigation, adaptive reservoir operation Ecohydrology, environmental flow (e-flow) **Integrated Water-Ecology Management** Linking hydrology, water guality, and ecology modeling, multi-criteria planning **Citizen Science and Community** Public involvement in monitoring and Local ecological surveys, waterkeeper • programs, mobile-based monitoring apps **Participation** stewardship

### Future Directions in Socio-hydrology

| <u>Category</u> |                                                 | Key Focus Areas                                                      | Examples & Approaches                                                                                   |  |
|-----------------|-------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| •               | Human–Water Interactions                        | Understanding mutual influence between society and hydrology         | Water use behavior, infrastructure development, land use change                                         |  |
| •               | Feedback Loops and Co-evolution                 | Analyzing dynamic feedback between human decisions and water systems | Irrigation expansion $\rightarrow$ water scarcity $\rightarrow$ policy reform $\rightarrow$ land change |  |
| •               | Integrated Modeling                             | Coupling social, economic, and hydrological models                   | Agent-based models, system dynamics, coupled human–natural systems (CHANS)                              |  |
| •               | Risk Perception and Decision-<br>making         | Studying how people perceive and respond to water-related risks      | Flood memory effects, drought preparedness behavior, risk communication                                 |  |
| •               | Social <u>Resilience</u> and <u>Adaptation</u>  | Assessing community capacity to adapt to hydrological changes        | Adaptive governance, social learning,<br>institutional flexibility                                      |  |
| •               | Water Justice and Equity                        | Exploring access, distribution, and fairness in water systems        | Environmental justice, vulnerable communities, participatory water rights                               |  |
| •               | Historical and Cultural Dynamics                | Considering long-term social drivers of hydrological change          | Legacy effects, traditional water<br>knowledge, societal memory                                         |  |
| •               | Transdisciplinary and Stakeholder<br>Engagement | Co-developing knowledge with non-scientific actors                   | Participatory modeling, community<br>workshops, inclusive scenario planning                             |  |

### Future Directions in Eco-hydrology

| <u>Category</u> |                                                     | Key Focus Areas                                             | Examples & Strategies                                                               |
|-----------------|-----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------|
| •               | Integration with Nature-based<br>Solutions (NbS)    | Embedding eco-hydrology within broader<br>NbS strategies    | Catchment-scale planning with green infrastructure and ecological corridors         |
| •               | Climate- <u>resilient</u> Ecosystem Design          | Enhancing ecosystem adaptability to climate extremes        | Designing wetlands for drought/flood<br>buffering, thermal refugia for aquatic life |
| •               | Urban Eco-hydrology                                 | Applying eco-hydrological principles in cities              | Sponge cities, green roofs, bioretention systems, permeable surfaces                |
| •               | Coupled Eco-hydrological Modeling                   | Integrating hydrological and ecological processes in models | Linking vegetation dynamics with flow regimes and nutrient cycles                   |
| •               | Water Quality Regulation via<br>Ecosystems          | Using biotic components to improve water quality            | Riparian buffers, constructed wetlands, phytoremediation                            |
| •               | <b>Restoration of Natural Flow Regimes</b>          | Reinstating ecologically beneficial hydrological patterns   | Environmental flow (e-flow) implementation, dam reoperation, flow re-naturalization |
| •               | Ecohydrological Engineering                         | Hybrid systems combining grey and green infrastructure      | Leaky dams, retention basins with wetland edges, vegetated drainage systems         |
| •               | Policy and <u>Governance</u> Integration            | Mainstreaming eco-hydrology into planning and policy        | Ecohydrological guidelines in water laws,<br>SDG-linked ecosystem management        |
| •               | Biodiversity and Ecosystem <u>Services</u><br>Focus | Enhancing multifunctionality of water-<br>ecology systems   | Managing for habitat diversity, carbon sequestration, recreation, and pollination   |

### **Integration** Insights with Broader Water Management

- **Digital Twin + Ecohydrology**: simulating hydrological-ecological interactions virtually
- Nature-Based Solutions + Biodiversity Restoration: enhancing both ecosystem resilience and water services
- Smart Monitoring + eDNA/IBI: AI-enhanced predictions of aquatic ecosystem health Index of Biotic Integrity
- Digital Twin + Nature-Based Solutions
  - sustainable management of urban infrastructure, water resources, and climate adaptation

### Comparison of attitudes toward new ideas and their absorption capacity

| <u>Region</u> | <u>Attitude</u>                        | Absorption Capacity     | Level/Depth                     |
|---------------|----------------------------------------|-------------------------|---------------------------------|
| USA           | Practical, fast, and proactive         | Very fast               | Action-oriented, innovative     |
| Europe        | Philosophical, cautious, reflective    | Slow but thorough       | Theoretical, policy-oriented    |
| Asia          | Flexible, harmony-focused, integrative | Moderate, very flexible | Adaptive, complex, integrative, |

Water – Thales

Air - Anaximenez

**Soil** – Empedocles

**Fire** - Hercules

### Aristotle gave authority to it.

Ancient Greek philosophers thought 'Four Elements' as the sources of all things.



SWOT Surface Water and Ocean Topography

All water on, in, and above the Earth

- Liquid fresh water
- Fresh-water lakes and rivers

http://ga.water.usgs.gov/edu/earthhowmuch.html



**GOLD** Global-scale Observations of the Limb and Disk ICON Ionospheric Connection Explorer





#### MODIS Observed : 2015-09



RIVE MONITOR

AND MOMONIORIN

#### Keywords for Integrated Water Management



**Digital Twin** 

First Proposed ByMichael Grieves (2002, in the context of Product Lifecycle Management)Term Popularized ByNASA (around 2010, for spacecraft simulation and remote maintenance)

### FieldUse Cases / Applications

**Reservoir and dam simulation** for optimized release control Water Sector Groundwater and river system modeling Optimization of **urban water cycles** and wastewater systems Real-time monitoring of water flow, pressure, and quality **Leak detection** and predictive maintenance in pipe networks Natural Flood risk modeling based on weather, topography, and urban infrastructure Disaster City-wide disaster response systems using sensors, drones, and CCTV Simulation of wildfire spread using wind, vegetation, and terrain data Management Landslide risk prediction in mountainous or vulnerable areas Earthquake response modeling for infrastructure impact assessment Climate & **Climate modeling and forecasting** using high-resolution simulations Support for early warning systems (e.g., typhoons, heatwaves, droughts) through real-time Weather integration with weather satellites and sensors Scenario testing for climate resilience planning Creation of virtual environments to test policy impacts (e.g., urban heat islands, emission reductions) Urban climate twin models for predicting temperature, wind, and pollution in dense cities

### Key function of **DT**

#### **Self-evolution Process**- the ability to adapt and improve for next success

Anomaly Detection, Error Attribution, Model Update/Calibration, Learning & Reconfiguration, Reinforcement-Like Learning

Insights

Decisions

의사결정





### Digital Twin for Drought Cycle

| US Drought type     | Focus & Mor                                           | nitoring Agencies                                                                                       | EU Drought type                               | Focus & Monitoring Agencies                                                                        |
|---------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|
| Meteorological      | <u>high focus</u><br>NOAA, NWS,<br>temperature        | and NIDIS monitor precipitation, anomalies                                                              | Meteorological                                | <u>very strong focus</u><br>ECMWF, Copernicus Climate Change Service<br>(C3S), EUMETSAT            |
| Agricultural        | <u>very high fo</u><br>USDA uses s<br>Drought Mor     | <u>cus</u><br>oil moisture, crop conditions, and<br>nitor outputs                                       | Agricultural                                  | <u>high focus</u><br>JRC (Joint Research Centre), Copernicus<br>monitors crop water stress & soil  |
| Hydrological        | <u>strong focus</u><br>USGS and Ar<br>reservoir leve  | my Corps monitor streamflows,<br>els, groundwater                                                       | Hydrological                                  | <u>moderate focus</u><br>European Drought Observatory (EDO), nationa<br>hydromet services          |
| Socioeconomic       | <u>growing focu</u><br>Integrated in<br>estimates, es | <u>is</u><br>to NIDIS with economic loss<br>pecially in the West                                        | Socioeconomic                                 | <u>emerging</u><br>EU Drought Risk Management frameworks<br>consider economic impact less directly |
| <u>Drought type</u> | South Korea                                           | Role                                                                                                    |                                               |                                                                                                    |
| Meteorological      | KMA                                                   | real-time precipitation and tempe<br>climate model-based drought for                                    | erature monitoring<br>ecasts, SPI/SCPI drou   | ght index computation                                                                              |
| Agricultural        | <u>KRC</u>                                            | soil moisture monitoring in farml<br>rice paddy Irrigation scheduling u                                 | and<br>Jsing sensor network:                  | S                                                                                                  |
| Hydrological        | K-water                                               | reservoir and streamflow modelin water resource balance forecastin                                      | ng<br>Ig, Al-driven drought                   | response at dam systems                                                                            |
| Socioeconomic       | Government                                            | water demand planning and eme<br>scenario testing for sectoral wate<br>public warning and communication | rgency response<br>r allocation<br>on systems | 15                                                                                                 |

### 자연기반해법 국제자연보전연합 IUCN

- 현재의 사회적 도전문제에 효율적, 적응적으로 맞서
- 인류복지와 생물다양성의 혜택을 동시에 제공할 수 있도록
  - 자연 또는 수정 생태계의 보호와 지속가능한 관리 및 회복시키기 위한 일련의 행동조치
- Nature-based Solutions IUCN International Union for Conservation of Nature (2009, 2016)
  - actions 실행
    - to protect, sustainably manage, and restore natural or modified ecosystems
    - that address societal challenges effectively and adaptively 효율적/적응적 도전
    - <u>simultaneously provide human well-being and biodiversity benefits.</u> 1 2



- into cities, landscapes and seascapes
- through locally adapted, resource-efficient and systemic interventions. 지역맞춤형 실행, 자원 효율적, 사회전반 참여유도



### **Nature-based Solutions**

We need ecosystem-based approaches



Societal challenges to provide human well-being and biodiversity benefits



🕖 Windy: 메뉴

ː메뉴 × +

#### - 0 >



- Windy replicates and visualizes real-world atmospheric systems
  - **Digital Twin** of the Earth's Atmosphere
    - partial or early form of a digital twin
    - **potential with SWAT** for two-way interaction or control of physical environments
      - Flood/Drought Forecasting & Water Resource Management
      - Smart Agriculture / Climate Services for Farming
      - Soil Erosion and Sediment Transport Modeling
      - Climate Change Scenario Simulations
      - Smart Cities & Digital Twin Platforms
- Nature-Based Solutions applicable in SWAT
  - Forest Restoration & Vegetation Expansion- modify land use/land cover in HRUs
  - Riparian Buffer Strips- set grassland or forest in HRUs along streams
  - Conservation Agricultural Practices- adjust surface roughness, tillage methods (e.g., no-till), management schedules
  - Wetland Restoration and Construction- define wetland areas in HRUs or insert wetlands as landscape features
  - Vegetative Low Impact Development (LID)- assume land use with infiltration structures
  - Terracing and Slope Stabilization- activate the terrace option or modify slope class in HRUs
  - Cover Crops- add cover crops in management schedules of HRUs
  - Small Dams, Ponds, Sediment Basins- use pond or reservoir features in SWAT

### Integration examples with SWAT

- ① Assessment of watershed health, vulnerability, and resilience for determining protection and restoration Priorities
- 2 Quantification of long-term watershed environment change impact on stream drying phenomena
- ③ Integration of SWAT, CE-QUAL-2, and PHABSIM to secure ecological flow
- 4 Advanced detection of agricultural drought using Terra MODIS NDVI



Jeju

#### South Korea

• Area 100,210km<sup>2</sup>

| Name           | Area (km²) |
|----------------|------------|
| Han River      | 26,018     |
| Nakdong River  | 23,817     |
| Geum River     | 9,885      |
| Seomjin River  | 4,896      |
| Yeongsan River | 3,467      |
| Jeju Island    | 1,849      |
|                |            |

| Land Use Type                       | Area (km²) |
|-------------------------------------|------------|
| Forest Land                         | 63,000     |
| Agricultural Land                   | 17,000     |
| Residential Area<br>Industrial Area | 3,700      |
| <b>Commercial Area</b>              | 500        |
| <b>Public Facilities</b>            | 3,000      |
| Transportation                      | 2,500      |
| Water Bodies                        | 2,000      |
| Others                              | 2,000      |

#### (1) Assessment of watershed health, vulnerability and resilience for determining protection and restoration Priorities S. Ahn, S. Kim Environmental Modelling & Software. 122, 103926, 2019.12



### SWAT streamflow & water quality modeling





#### Dam water level



## ET & Soil Moisture ✓ Calibration : 3 years (2009-2011) / Validation : 2 years (2012-2013)

Multi-Function Wein
 Multi-Purpose Dam

Weather Station
 ET & SM station

Groundwater Level Stati

Water Quality Stati
 Point Source

fatershed & Strea

Standard Watershed



#### **Groundwater level**





#### SCIENTIFIC PROCESS

Assessment of watershed health based on natural environment

![](_page_24_Figure_2.jpeg)

#### SCIENTIFIC PROCESS

Assessment of watershed vulnerability based on artificiality factor

![](_page_25_Figure_2.jpeg)

#### SCIENTIFIC PROCESS

Assessment of watershed social context

![](_page_26_Figure_2.jpeg)

**GRDP** Gross Regional Domestic Product

![](_page_27_Picture_0.jpeg)

Assessment of watershed resilience and restoration priority

![](_page_27_Figure_2.jpeg)

![](_page_28_Picture_0.jpeg)

Assessment of watershed resilience and restoration priority

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

#### http://www.wamis.go.kr/ for each standard watershed (120 km<sup>2</sup>, 850)

![](_page_29_Figure_1.jpeg)

- 0

지도검색

설명

2020s(2010-2039)

미래유역건전성 및 취약성

유역별 대응전략

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

#### watershed health 📃 유역 건전성

|                                           | 유역 건전성 통합지수 (0.36)           | 과거 🗸                                   |
|-------------------------------------------|------------------------------|----------------------------------------|
| Landscape <sup>토지피복지수</sup><br>0.41       | 수량 건전성<br>Hydrology 0.98     | Biological 생태서식지 건전성<br>condition 0.33 |
| 자연식생 0.26                                 | <del>총유출</del> 0.95          | <u>호소</u> 0                            |
| 수변구역 0.61                                 | 지표유출 0.92                    | 습지 0.57                                |
|                                           | 중간유출 0.94                    |                                        |
|                                           | 기저유출 0.76                    |                                        |
| Stream <sup>하천</sup><br>geomorphology 0.6 | 수질 건전성<br>Water Quality 0.09 | Aquatic habit統생태 건전성<br>condition 0.35 |
| 하천형상 0.39                                 | Sediment 0.17                | TDI 0.21                               |
|                                           | T-N 0.16                     | BMI 0.72                               |
|                                           | T-P 0.45                     | FAI 0.18                               |

#### हि सल मेलल watershed vulnerability

|              | 유역 취약성 통합지수(0.64)                           |   |                                |      |                             |           | 과거                                   | ~    |
|--------------|---------------------------------------------|---|--------------------------------|------|-----------------------------|-----------|--------------------------------------|------|
| mpe<br>rea ( | rvious <del>불투수충변희(</del> 도시개발)<br>change 0 |   | Water use 물수요변화<br>change 0.84 |      | Climate 기후변화<br>change 0.99 | Re<br>cov | cent land 최근토지피복변화<br>er change 0.42 |      |
|              | 불투수면적 변화(도<br>시개발)                          | 0 | 상수도                            | 0.65 | 강수량                         | 0.97      | 최근토지이용변화                             | 0.42 |
|              |                                             |   | 공업용수                           | 0.71 | 최고기온                        | 0.97      |                                      |      |
|              |                                             |   | 농업용수                           | 0.84 | 최저기온                        | 0.76      |                                      |      |

#### া≣ শহৰ মথ watershed social context

| L      |                                                 |      | 사회적요인 통합지수(0.38) |      | 과거                                           | ~    |
|--------|-------------------------------------------------|------|------------------|------|----------------------------------------------|------|
| $\sim$ | Financial<br><sup>재정자립도</sup> independence rate | 0.38 | 지역내 총생산 GRDP     | 0.54 | 물관리 공무원 수 Water management<br>public officer | 0.54 |

| ·          | 📃 <del>5급</del> 과거 ~현재 | ✓ 2080S(2070-2099) ✓           | watershed pro                     | tection and rest             | oration priorities    |
|------------|------------------------|--------------------------------|-----------------------------------|------------------------------|-----------------------|
| 보호<br>보호우선 | ٨                      | protection of<br>grassland     | management of surface water       | management of<br>groundwater | management of<br>TMDL |
| 복구<br>복구우선 | A                      | management of<br>NPS pollution | management of<br>industrial water | reforestation                | 31                    |

![](_page_30_Figure_10.jpeg)

### **1970s**

![](_page_31_Picture_1.jpeg)

### 2000s ~

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

![](_page_31_Picture_6.jpeg)

![](_page_31_Picture_7.jpeg)

#### Quantification of long-term watershed environment change impact on stream drying phenomena (2)Streamflow reducing factors

![](_page_32_Figure_1.jpeg)

### South Korea

200.0

- Area 100,210km<sup>2</sup>
  - Forest 63%
    - Average growing stock **165.2** m<sup>3</sup>/ha (2020)
      - New Zealand 391, Germany 320, Japan 170

Average growing stock (m<sup>3</sup>/ha)

• Norway 95.5, Spain 65.8, Greece 47.6

### Arbor Day in Korea (Sikmogil)

- April 5<sup>th</sup>: national holiday
  - 1949~2006
- National Forest Plan
  - 1973~

![](_page_33_Picture_11.jpeg)

![](_page_33_Picture_12.jpeg)

![](_page_33_Figure_13.jpeg)

#### Forest functions

| <b>Category</b> | Major Functions                                                                 |
|-----------------|---------------------------------------------------------------------------------|
| Ecological      | Provide habitat for wildlife and support biodiversity                           |
|                 | Protect soil and prevent erosion                                                |
|                 | Regulate water cycles and improve water quality                                 |
|                 | Regulate climate through carbon sequestration and oxygen production             |
| Economic        | Supply timber and non-timber forest products (e.g., fuelwood, medicinal plants) |
|                 | Generate employment and income for forest-dependent communities                 |
|                 | Contribute to local and national economies                                      |
| Social &        | Offer recreation and tourism opportunities                                      |
| Cultural        | Hold cultural and spiritual significance for indigenous and local peoples       |
|                 | Provide resources for education and scientific research                         |
| Protective      | Serve as buffers against natural disasters like floods, landslides, and storms  |
|                 | Act as windbreaks and help stabilize microclimates                              |

#### National Forest Plan of South Korea

and smart forest management.

| Period    | Main Characteristics                                                                            |
|-----------|-------------------------------------------------------------------------------------------------|
| 1973–1987 | Quantitative afforestation and reforestation focused on recovering degraded forests.            |
| 1988–1997 | Shift to qualitative forest management, focusing on maintaining and utilizing existing forests. |
| 1998–2007 | Emphasis on the economic value of forests; promotion of forest-related industries.              |
| 2008–2017 | Forests as a solution to climate change; emphasis on carbon sinks and ecosystem services.       |
| 2018–2037 | Comprehensive plan focusing on forest welfare, biodiversity conservation,                       |

# Economic Valuation of Forest Functions in South Korea (Estimated Annual Value)

| <b>Function</b>               | <u>Estimated</u><br><u>Economic Value</u><br>(KRW) | <u>Estimated</u><br><u>Economic Value</u><br>(USD) | <b>Description</b>                                                                    |
|-------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|
| Carbon<br>Sequestration       | ₩1.5 trillion                                      | ~\$1.1 billion                                     | Value of CO <sub>2</sub> absorption and carbon credits                                |
| Water Resource<br>Regulation  | ₩1.3 trillion                                      | ~\$950 million                                     | Improvement in water<br>quality, groundwater<br>recharge, and flood<br>mitigation     |
| Soil Erosion<br>Prevention    | ₩800 billion                                       | ~\$600 million                                     | Protection against<br>landslides and soil loss,<br>especially in mountainous<br>areas |
| Air Purification              | ₩1.1 trillion                                      | ~\$820 million                                     | Absorption of pollutants such as PM10, NOx, and ozone                                 |
| Timber and Forest<br>Products | ₩500 billion                                       | ~\$370 million                                     | Commercial forestry<br>including timber,<br>mushrooms, herbs                          |
| Recreation and<br>Tourism     | ₩6.0 trillion                                      | ~\$4.5 billion                                     | Forest-based tourism,<br>healing forests, and<br>national park visitation             |
| Biodiversity &<br>Habitat     | Difficult to<br>quantify                           | -                                                  | Ecological insurance value;<br>sometimes estimated via<br>willingness-to-pay surveys  |

### Korean Red Pine (Pinus densiflora) Growth

| <u>Age (Years)</u> | <u>Avg. Tree Height (m)</u> | Stand Density (trees/ha) | Stand Volume (m <sup>3</sup> /ha) |
|--------------------|-----------------------------|--------------------------|-----------------------------------|
| 5                  | 2.0 – 2.5                   | 4,000 - 5,000            | _                                 |
| 10                 | 4.0 - 5.0                   | 3,000 - 4,000            | 10 – 30                           |
| 20                 | 8.0 - 10.0                  | 1,500 – 2,500            | 50 – 80                           |
| 30                 | 12.0 – 15.0                 | 1,000 – 2,000            | 120 – 150                         |
| 40                 | 15.0 – 18.0                 | 500 - 1,000              | 180 – 220                         |
| 50                 | 18.0 – 20.0                 | 300 - 800                | 250 – 300                         |

### Relationship between Stand Volume and Evapotranspiration (ET)

| Forest Stage              | Stand Volume (m <sup>3</sup> /ha)    | <u>Annual ET (mm/year)</u> | <u>Remarks</u>                                    |
|---------------------------|--------------------------------------|----------------------------|---------------------------------------------------|
| Young Forest              | Low (< 50)                           | 300 – 400                  | Small trees, low leaf area, low transpiration     |
| Maturing Forest           | Moderate (100 – 200)                 | 500 – 700                  | Rapid canopy expansion, increasing transpiration  |
| Mature Forest             | High (200 – 300+)                    | 700 – 900+                 | Large biomass, high LAI, maximum<br>water use     |
| <b>Overstocked Forest</b> | Very high density, stagnating growth | May decline slightly       | Water stress or competition may reduce efficiency |

### Rainfall Interception by Korean Red Pine (Pinus densiflora) by Stand Age

| <u>Age Class</u> | Mean Tree<br>Height (m) | Stand Density<br>(trees/ha) | Stand Volume<br>(m³/ha) | Estimated<br>LAI | Litter Depth<br>(cm) | Rainfall Interception<br>(% of annual rainfall) | <u>Remarks</u>                                  |
|------------------|-------------------------|-----------------------------|-------------------------|------------------|----------------------|-------------------------------------------------|-------------------------------------------------|
| 5 years          | ~2.5                    | 3,500 - 5,000               | <20                     | 0.5 – 1.0        | ~0.5                 | 5 – 8%                                          | sparse canopy, low leaf area,<br>minimal litter |
| 10 years         | ~4.5                    | ~3,000                      | ~40                     | 1.2 – 1.8        | ~1.0                 | 8 – 12%                                         | canopy expanding, slight litter<br>layer        |
| 20 years         | ~8.5                    | ~2,500                      | ~100                    | 2.0 - 3.0        | ~2.0                 | 13 – 17%                                        | moderate canopy, growing<br>litter cover        |
| 30 years         | ~12.0                   | ~1,800 - 2,200              | ~160                    | 3.0 - 4.0        | ~3.0                 | 17 – 22%                                        | developed canopy and litter<br>layer            |
| 40 years         | ~15.0                   | ~1,200 - 1,800              | ~220                    | 4.0 - 4.5        | ~4.0                 | 20 – 25%                                        | peak canopy cover, thick litter<br>layer        |
| 50+ years        | ~18.0                   | ~800 - 1,200                | 250 – 300+              | 4.5 – 5.0        | 5.0+                 | 22 – 28%                                        | fully mature, maximum<br>interception potential |

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

### Integration of Stand Volume and Evapotranspiration in Hydrological Models

**Comparison of Water Budgets by Forest Type** 

**Evaluation of Reforestation Effects** 

| Model                                                            | Key Features                                                           | Representation of Stand Volume                                                                        | Evapotranspiration (ET) Calculation                                          |
|------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <b>SWAT</b> (Soil & Water<br>Assessment Tool)                    | Watershed-scale rainfall-<br>runoff modeling                           | Vegetation type and LAI assigned via<br>GIS input layers; stand volume<br>indirectly reflected by LAI | Empirical methods like Penman-<br>Monteith, Priestley-Taylor                 |
| <b>RHESSys</b> (Regional<br>Hydro-Ecologic<br>Simulation System) | Eco-hydrological model<br>integrating vegetation and<br>water dynamics | Dynamic vegetation module<br>translating biomass to LAI; stand<br>volume dynamically updated          | Physically-based canopy<br>transpiration models                              |
| Tethys & Chloris (T&C)                                           | High-resolution process-<br>based model                                | Detailed growth model incorporating biomass, DBH, and LAI explicitly                                  | Physiological ET models based on<br>photosynthesis (e.g., Farquhar<br>model) |
| Examples of Model Ap                                             | plication                                                              |                                                                                                       |                                                                              |
| Analysis Objective                                               | <u>A</u>                                                               | pproach                                                                                               |                                                                              |
| Change in ET Before and                                          | l After Thinning S                                                     | et thinning scenarios to reduce LAI and a                                                             | analyze resulting ET changes                                                 |

Forest Survival Prediction under Climate Change Combine climate scenarios with changes in stand volume to assess forest resilience

Compare ET and water use between deciduous and coniferous forests

Analyze watershed hydrological response before and after afforestation based on changes in stand volume

### Watershed environment change impact on Streamflow

![](_page_38_Figure_1.jpeg)

Assessment of Long-term Groundwater Use Increase and Forest Growth Impact on Watershed Hydrology W. Kim, S. Kim\*, Ji. Kim, Ji. Lee, S. Woo, S. Kim Water Resources Management. 36, 5801-5821, 2022.08

### Stream Drying Intensification (1976~2015)

![](_page_39_Figure_1.jpeg)

### Drying stream contribution ratio

![](_page_39_Figure_3.jpeg)

# Comparison of South Korea water resources changes by long-term streamflow reducing watershed environment factors using **SWAT**

![](_page_40_Figure_1.jpeg)

() ③ Integration of SWAT, CE-QUAL-2, and PHABSIM to secure ecological flow

![](_page_41_Figure_1.jpeg)

### SWAT modeling results by applying 1970s & 2010s watershed environments

![](_page_42_Figure_1.jpeg)

### • PHABSIM ecological flow

Estimation of an Optimum Ecological Stream Flow in the Banbyeon Stream Using PHABSIM -Focused on Zacco platypus and Squalidus chankaensis tsuchigae –

Park, Jinseok • Jang, Seongju • Song, Inhong Journal of the Korean Society of Agricultural Engineers, 62(6), 2020. 11

![](_page_43_Figure_3.jpeg)

### HEC-RAS stream cross section

![](_page_43_Figure_5.jpeg)

Habitat Suitability Curve (HSC) index estimated for the representative fish species

![](_page_43_Picture_7.jpeg)

minnow, pale chub

![](_page_43_Figure_9.jpeg)

small carp

Korean gudgeon

Zacco platypus

![](_page_43_Figure_12.jpeg)

Squalidus chankaensis tsuchigae

![](_page_43_Figure_14.jpeg)

Enter to move to next upstream river station location

Weighted Usable Area (WUA) estimated for the representative fishes

![](_page_44_Figure_2.jpeg)

2,000 1,000

Discharge (m3/s)

# Longitudinal profile of water surface level and WUA at the optimal ecological flow rate for Zacco platypus

![](_page_44_Figure_4.jpeg)

Securing days and amount of ecological flow to recover 2010s Q to 1970s Q

![](_page_45_Figure_1.jpeg)

Impact of rapid urbanization on flow regime and ecosystem services at seasonal scale: A case study in water conservation area along the Gyeongan River, South Korea W. Kim, S. Woo\*, Y. Kim, S. Kim, S. Kim, S. Kim Science of the Total Environment. 969(1), 178958, 2025.03

**OBMPs application** to improve stream water quality after securing ecological flow

![](_page_46_Figure_2.jpeg)

Load Duration Curve - T-P (2010~2019)

# for Integrated Water Management,

Watershed management for stable water resources

- Land development- Low Impact Development
- Soil conservation practice- keep on soil water storage & groundwater recharge
- Forest management- Periodic thinning to reduce ET loss
- Groundwater use- keep safe yield of groundwater

Land management for healthy stream water quality

- Nonpoint source pollution- BMPs
- Point source pollution- sewage treatment and reprocessing
- Water pollution accident- rapid trace & strict punishment
- Gas station oil leak- steady surveillance & prompt action

Disaster management for safe water & healthy stream ecology

- Risk management- promised solution
- Building resilience- climate change adaptation

# with **SWAT**

### 4 Advanced detection of agricultural drought using Terra MODIS NDVI

## Drought Management

![](_page_48_Figure_2.jpeg)

## **Drought** Advanced Detection and Prediction

#### before 6~3 months before 2~1 months Present to Future Precipitation for February-April 2018 2001/04/07 2015/09/14 00:00:00 Under 0.0 -0.05 - 0.1 Norm: -Over 0.1 2015/04/07 2010/04/0 201 2013/04/07 2014/04/07 © APEC Climate Center GCM scenarios ensemble **SWAT** Al, Machine Learning Satellites

Mega Drought Study

https://www.apcc21.org/main.do?lang=en

- MOD13 16-days composite product
  - NDVI, Normalized Difference Vegetation Index

NDVI = Band2 - Band1
 Band2 + Band1
 to identify the health status of plants
 to depict phenological changes
 to estimate green biomass and crop yield
 Band1 (Red) 0.620~0.670 μm
 Band2 (NIR) 0.841~0.876 μm

Korean Peninsula

![](_page_50_Picture_4.jpeg)

- MOD15 8-days composite product
  - LAI

![](_page_50_Picture_7.jpeg)

![](_page_51_Figure_0.jpeg)

NDVI

advance temperature rise from March of 2014 & 2015 compared to normal years

![](_page_51_Figure_3.jpeg)

#### **Rice paddy**

![](_page_52_Figure_1.jpeg)

### **Upland field**

![](_page_52_Picture_3.jpeg)

![](_page_52_Figure_4.jpeg)

![](_page_52_Figure_5.jpeg)

Band2 + Band1

Band1 (Red) 0.620~0.670 μm Band2 (NIR) 0.841~0.876 μm Terra MODIS

![](_page_52_Figure_8.jpeg)

### Water Supply for Rice Paddy

| <u>Region</u>     | Seedbed Water Supply Starts | Transplanting Period (Approx.) |
|-------------------|-----------------------------|--------------------------------|
| Southern Korea    | Late March ~ Early April    | Early May ~ Mid-May            |
| Central Korea     | Mid ~ Late April            | Mid-May ~ Late May             |
| Northern/Highland | Early May                   | Late May ~ Early June          |

### March Sowing Crops

| Crops                                                                                                    |
|----------------------------------------------------------------------------------------------------------|
| Barley (spring), Oats, Peas, Mung beans (southern areas)                                                 |
| Carrots, Radishes, Beets, Burdock                                                                        |
| Lettuce, Spinach, Garland chrysanthemum, Swiss chard, Bok choy                                           |
| Potatoes (southern & central regions), Garlic, Onions (non-winter)                                       |
| S                                                                                                        |
| <u>Crops</u>                                                                                             |
| Corn (sweet/silage), Kidney beans, Mung beans <i>(central/south)</i> , Peanuts                           |
| Sweet potatoes (sprout raising), Carrots, Radishes, Potatoes (north)                                     |
| Chinese cabbage (spring), Cabbage, Lettuce, Spinach                                                      |
| Cucumbers, Watermelons, Melons, Pumpkins, Tomatoes, Eggplants, Chili peppers (transplant mid-late April) |
|                                                                                                          |

Terra MODIS 7 April (2000~2015) NDVI<sub>i</sub> – NDVI<sub>mean</sub>

> Rice paddy 775,000 ha, 7.8%

![](_page_54_Figure_2.jpeg)

Upland field 752,000 ha, 7.5%

#### Satellites, GCM etc.

![](_page_55_Picture_1.jpeg)

### **SWAT** modeling

Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT applications K. C. abbaspour1, S. ashraf Vaghefi 1, H. Yang1\* & R. Srinivasan Scientific Data, 2019 https://doi.org/10.1038/s41597-019-0282-4

#### Integrated application

![](_page_55_Picture_5.jpeg)

GPM <u>click</u>

![](_page_55_Figure_7.jpeg)

![](_page_55_Picture_8.jpeg)

### Flood modeling

сс

### Al, Machine Learning

![](_page_55_Picture_11.jpeg)

Sentinel-1 Inundation area

![](_page_56_Figure_0.jpeg)

|      | KCI | SCI |
|------|-----|-----|
| 2001 | 0   | 1   |
| 2003 | 1   | 0   |
| 2004 | 0   | 3   |
| 2005 | 2   | 0   |
| 2006 | 9   | 2   |
| 2007 | 5   | 2   |
| 2008 | 5   | 4   |
| 2009 | 5   | 3   |
| 2010 | 1   | 13  |
| 2011 | 1   | 14  |
| 2012 | 1   | 7   |
| 2013 | 20  | 9   |
| 2014 | 17  | 20  |
| 2015 | 6   | 8   |
| 2016 | 5   | 22  |
| 2017 | 1   | 24  |
| 2018 | 12  | 23  |
| 2019 | 9   | 19  |
| 2020 | 3   | 11  |
| 2021 | 4   | 18  |
| 2022 | 1   | 11  |
| 2023 | 1   | 4   |
| 2024 | 0   | 3   |
| 2025 | 0   | 1   |
|      | 109 | 222 |

# SWAT study in South Korea

**2010** 

• Watershed hydrology simulation & nonpoint source pollution assessment

### ~2015

• Projection of watershed hydrology and water quality using climate change scenarios

## 2016~2020

- Agricultural water supply capacity assessment
- Integration of watershed SWAT and lake/river hydraulic models such as WASP, CE-QUAL-W2

### 2021~

- SWAT-K
- SWAT+