

Estimating Reservoir Sediment Retention SWAT for Sustainable Dam Managem

Christian Joseph Siose , Sangjoon Bak, Yeonji Jeong, Jeongho Han, Seoro Lee, Gwanjae Lee, Kyoung Jae Lim Master's Student Interdisciplinary Program in Earth Environmental System Science & Engineering, Kangwon National University¹

Soil & Water SWAT

International SWAT Conference 2025

Table Of Content IV

Introduction

Method ology

Results & Discussion

Conclusion

Introduction ••• ••• •••

I. Introduction

Sediment consists of soil, sand, and mineral particles eroded and transported by river flow. ✤ Human activities and climate change have increased erosion and sediment runoff into rivers. This leads to sediment buildup in reservoirs, reducing their capacity and efficiency.

I. Introduction

Sediment accumulation in reservoirs reduces active storage capacity, directly impacting • water supply, irrigation efficiency, and flood control potential and even affect the water contamination in the river

Reduced Active Water Storage in Jukrim Dam Source: YTN News (2015)

Source: KBS News (2024)

Objective of the study

This study evaluates the impact of the Dam on Total Sediment load in the Naeseongcheon Stream by applying the SWAT model

CASE1

1

To evaluate the sediment retention in the dam by comparing the Total Sediment load at the Upstream and Downstream station of the dam

CASE2

- Downstream

To assess the dam's impact in the downstream by comparing the Total Sediments loads at station considering With and Without the dam

>>>> Methodology

II. Methodology – Study Area

Naesongcheon Stream in Nakdong River, South Korea Yeo ngju Dam is a multipurpose dam with a storage capacity of 160.4 million m³ ✓ Dam's Construction started in 2009 and was completed in 2016

II. Methodology –Data Collection

- Digital Elevation Model (DEM) data with a 30-meter resolution were provided by the National Spatial Data Infrastructure Portal
- Soil data were provided by the Rural Development Administration
- Land use data were provided by Ministry of Environment

9/22

II. Methodology –Data Collection

Data Collection Period

- Warm -up period (2014 ~ 2016)
- Simulation Period (2017 ~ 2020)

		Meteorological Observ	vation Data
Data	Source	Data Type	
Precipitation	Korea Meteorological Administration (KMA)	Daily	Rainfall data fr specifically fro
Temperature (min/max)	KMA	Daily	Minimum and observation st
Wind Speed	KMA	Daily	Average Wind stations, (ASO
Solar Radiation	KMA	Daily	Solar Radiation stations, specia
Relative Humidity	KMA	Daily	Relative Humie stations, (AWS

Description

from general meteorological observation stations, om Automated Surface Observing System (ASOS)

d Maximum Temperature from general meteorological stations, (ASOS)

d Speed from general meteorological observation OS)

on data from general meteorological observation cifically from Automatic Weather Station (AWS)

idity data from general meteorological observation /S)

II. Methodology –Data Collection

- Streamflow Observation Data and Sediment Data
- Sediment Conversion Formula (Korean Water Resources Corporation, 2012)
 - ✓ Assumption : Suspended Load at Inflow of Yeongju Dam and Isan Bridge is similar

Data	Source	Data Type	
Streamflow (m ³ /s)	Water Resources Management Information System (WAMIS)	Daily	Streamflow data from general mo

\bigcap	<suspended sedimer<="" th=""><th>nts Data</th><th>></th><th><total se<="" th=""></total></th></suspended>	nts Data	>	<total se<="" th=""></total>
	Gopyeong Bridge (Upstre	am)		Gopyeong
	$Q_{SS} = 0.0675 Y^{1.982}$	7		QTS=2
	> Isan Bridge (Downstream) $Q_{SS} = 1.4696Y^{0.9564}$			
	Wherein,	Q	:	Streamflow (m ³ /s)
		Qss	:	Suspended Solids (ton/c
		Q TS	:	Total Sediment (ton/day
(Korea	n Water Resources Corporation, 2012)			

Description

neteorological observation stations

ediment Data>

g Bridge (Upstream)

15.56Yuu^{0.7703}

'day)

y)

II. Methodology

Case # 1

 \checkmark To evaluate the sediment retention in the dam by comparing the Total Sediment load at the Upstream Bridge) and Downstream (Isan (Mirim Bridge) of the Dam \Box Case # 2 \checkmark To assess the Dam's impact in the downstream by comparing the Total Sediments loads at Gopyeong Bridge With and Without the Dam

Year Case # 1 & 2

2014~2016	2017 ~ 2020
Warm-up	Modeling Simulation Period

I. Methodology – Calibration

SWAT-CUP

Streamflow Parameter

Parameter	Description	Variation Method	Range
CN2	SCS runoff curve number factor	Multiply by Value	-25.0 ~ 25.0
ALPHA_BF	Baseflow alpha factor (days)	Replace by Value	0.0 ~ 1.0
ALPHA_BNK	Baseflow alpha factor for bank storage	Replace by Value	$0.0 \sim 1.0$
GW_REVAP	Groundwater "revap" coefficient	Add	0.02 ~ 0.2
GWQMN	Threshold depth of water in the shallow aquifer required for return flow to occur (mm)	Replace by Value	0.0 ~ 5000.0
SURLAG	Surface runoff lag time	Replace by Value	0.05 ~ 24.0
SOL_AWC	Available water capacity of the soil later	Multiply by Value	-25.0 ~ 25.0
SOL_K	Saturated hydraulic conductivity	Multiply by Value	-25.0 ~ 25.0
CH_N2	Manning's value for the main channel	Replace by Value	-0.01 ~ 0.3
CH_K2	Effective hydraulic conductivity in main channel alluvium	Replace by Value	-0.01 ~ 500.0
ESCO	Soil evaporation compensation factor	Replace by Value	0.0 ~ 1.0

Suspended Sediments Parameter

Parameter	Description	Variation Method	Range
ADJ_PKR	Peak rate adjustment factor for sediment routing in the main channel	Replace by Value	0.5 ~ 2.0
PRF	Peak rate adjustment factor for sediment routing in the subbasin	Replace by Value	0.0 ~ 2.0

II. Methodology – Performance Metrics

- Indicates how well the model explains the variance in observed data
- Range: (0 to 1) values near 1 reflect strong model performance.

Objective Function	Outflow Response	Very Good	Good	Satisfactory	Not Satisfactory
D ²	Flow	> 0.85	$0.85 \ge R^2 > 0.75$	$0.75 \ge R^2 > 0.60$	0.60≥
R ²	Sediment	> 0.80	$0.80 \ge R^2 > 0.65$	$0.65 \ge R^2 > 0.40$	0.40≥
Moriasi et al.,	2015)				

- Nash-Sutcliffe Efficiency (NSE)
 - Measures the agreement between observed and simulated values
 - Range: $(-\infty \text{ to } 1)$ values closer to 1 indicate higher accuracy

Objective Function	Outflow Response	Very Good	Good	Satisfactory	Not Satisfactory
NCE	Flow	> 0.80	0.80 ≥ NSE >0.70	0.70 ≥ NSE >0.50	0.50≥
NSE	Sediment	> 0.80	0.80 ≥ NSE >0.70	0.70 ≥ NSE >0.45	0.45≥

(Moriasietal., 2015)

SWAT-CUP OPTIMAL CALIBRATED PARAMETER

Streamflow Optimal Parameter

Parameter	Description	Variation Method	Range	Fitted Value
CN2	SCS runoff curve number factor	Multiply by Value	-25.0 ~ 25.0	1.13075
ALPHA_BF	Baseflow alpha factor (days)	Replace by Value	0.0 ~ 1.0	0.012
ALPHA_BNK	Baseflow alpha factor for bank storage	Replace by Value	$0.0 \sim 1.0$	0.768
GW_REVAP	Groundwater "revap" coefficient	Add	0.02 ~ 0.2	0.027
GWQMN	Threshold depth of water in the shallow aquifer required for return flow to occur (mm)	Replace by Value	0.0 ~ 5000.0	2241.199
SURLAG	Surface runoff lag time	Replace by Value	0.05 ~ 24.0	5.556
SOL_AWC	Available water capacity of the soil later	Multiply by Value	-25.0 ~ 25.0	-7.286
SOL_K	Saturated hydraulic conductivity	Multiply by Value	-25.0 ~ 25.0	1.04604
CH_N2	Manning's value for the main channel	Replace by Value	-0.01 ~ 0.3	0.035
CH_K2	Effective hydraulic conductivity in main channel alluvium	Replace by Value	-0.01 ~ 500.0	74.425
ESCO	Soil evaporation compensation factor	Replace by Value	0.0 ~ 1.0	0.5

Suspended Sediments Optimal Parameter

Parameter	Description	Variation Method	Range	Fitted Value
ADJ_PKR	Peak rate adjustment factor for sediment routing in the main channel	Replace by Value	0.5 ~ 2.0	0.4
PRF	Peak rate adjustment factor for sediment routing in the subbasin	Replace by Value	0.0 ~ 2.0	0.4

- ✤ Isan Bridge ~Upstream
- \checkmark The Streamflow calibration results R²: 0.81/NSE: 0.74 indicate a 'Good' model performance
- ✓ The Sediment calibration results R²: 0.67/NSE: 0.64 indicate a 'Good' model performance while the NSE has a 'Satisfactory' model performance

licate a 'Good' model performance dicate a 'Good' model performance

17/22

- Gopyeong Bridge~ Downstream
- \checkmark The Streamflow calibration results R²: 0.78/NSE: 0.70 indicate a 'Good' model performance
- ✓ The Sediment calibration results R²: 0.77/NSE: 0.53 indicate a 'Good' model performance while the NSE has a 'Satisfactory' model performance

licate a 'Good' model performance licate a 'Good' model performance

✤ Case # 1

 ✓ The Total Sediment Retention Rate in the Dam is 13.6% by comparing the Upstream (Isan Bridge) and Downstream (Mirim Bridge) Dam

Veer	Total sediment load (ton/year)			
Year	Isan Bridge (Upstream)	Mirim Bridge (Downstream)	Retention Rate	
2017	8,285	13,979	-68.7%	
2018	19,780	16,615	16.0%	
2019	9,205	3,599	60.9%	
2020. 01~06	3,844	1,342	65.1%	
Total	41,114	35,536	13.6%	

19/22

✓ The Total Sediment Change Rate at Gopyeong Bridge is 16.5% by considering With and Without the

Total sediment load at Gopyeong Bridge site (ton/year)

Without Yeongju Dam	With Yeongju Dam	Change Rate
19,502.77	19,447.28	0.3%
33,198.50	28,012.07	15.6%
16,269.77	11,620.52	28.6%
7,099.25	4,470.26	37.0%
76,070.29	63,550.14	16.5%

V. Conclusions

Conclusions

- The SWAT model, calibrated with reliable flow and sediment data, was used to evaluate the impact of Yeongju Dam on total sediment transport.
 - \checkmark Case 1 showed a 13.6% retention rate, indicating sediment accumulation within the reservoir.
 - ✓ Case 2 showed a 16.5% reduction in downstream sediment load, confirming the Dam's impact on sediment transport
- ✤ Overall, the results demonstrate that the construction and presence of the Yeongju Dam have a measurable effect on sediment dynamics, both within the reservoir and downstream.
- These findings provide a methodology for future sediment management strategies in dam -affected river systems.

✤ Future Works

✓ Apply climate change scenarios (SSP1–2.6 to SSP5–8.5) to simulate future rainfall impacts on Total sediment transport for improved dam management.

Thank you »»» for your«« Attention!

