# SWAT+GL:

Opportunities & Challenges in Hydroglaciological Modeling Using SWAT+

Timo Schaffhauser Technical University of Munich Chair of Hydrology & River Basin Management



## Motivation



 SWAT+ widely used in alpine & glaciated catchments
Despite strong deficiencies with respect to glaciers! Are glaciers neglected?



**Past efforts often focus on simplistic approaches** *Shouldn't we provide an advanced "built-in" glacier routine?* 



#### Past efforts not freely or easily accessible

• FAIR principles

Shouldn't we promote accessibility & transparency?



2023/2024**: SWAT-GL** Based on SWAT2012



2024/2025: SWAT+GL Based on SWAT+

# SWAT+GL

SWAT+GL = A revised version of SWAT+: incorporating Glacier Processes!

### Core Elements:

- 1. Glacier Mass Balance Routine
  - Melt, Accumulation, Sublimation (daily)
- 2.
  - **Glacier Evolution Routine** 
    - (Dynamic) Glacier Change
    - Retreat, Advance (restricts e.g. flow)



# SWAT+GL – Core Elements



SWAT+GL: A revised version of SWAT+ accounting for glacier processes & extended snow processes

## **1.** Mass Balance

- Melt
- Accumulation
- Sublimation



 $W_t = W_{t-1} - M_t \cdot (1 - \beta_f) - S_t + C_t$ 

| W:          | Water Equivalent of Ice [mm] |
|-------------|------------------------------|
| M:          | Glacier Melt [mm/d]          |
| $\beta_f$ : | Refreezing Rate [-]          |
| S:          | Sublimation [mm/d]           |
| С:          | Glacier Accumulation [mm/d]  |

## 2. Glacier Evolution

Dynamic Glacier Change

Retreat & Advance

Annual

**Dynamic** 

Δh-parameterization:
ice thickness change Δh = function of elevation



## 3. Snow Extensions

- 4 additional snowmelt routines
- Time-varying lapse rates
- Mixed precipitation



 $\begin{aligned} Melt_{default} &= b(T - T_{melt}) \\ Melt_{HTI} &= (b + \alpha \cdot Rad)(T - T_{melt}) \\ Melt_{ETI} &= b(T - T_{melt}) + \alpha \cdot Rad \\ b_{wet} &= b + \gamma(P - P_{thr}) \end{aligned}$ 

Glacier Module: 1. Mass Balance

### Mass Balance: Glacier Melt

$$W_t = W_{t-1} - M_t \cdot (1 - \beta_f) - S_t + C_t$$

$$M_{t} = \begin{cases} \left(\frac{T_{ice} + T_{mx,t}}{2} - T_{gmlt}\right) \cdot b_{gmlt}, & \text{if } T_{mx,t} > T_{gmlt} \text{ and } A_{sc} < A_{gc} \\ 0, & \text{if } T_{mx,t} < T_{gmlt} \text{ or } A_{sc} < A_{gc} \end{cases}$$

| Wt:    | Water Equivalent of Ico [mm H20]    |
|--------|-------------------------------------|
| VVL.   | Water Equivalent of Ice [mm H20]    |
| Tmx:   | Max. Daily Temp. [°C]               |
| Tgmlt: | Threshold Temp of Glacier Melt [°C] |
| bgmlt: | Ice Melt Factor [mm/(d*°C)]         |
| Asc:   | Snow Cover Fraction of Subbasin [-] |
| Agc:   | Glaciated Fraction of Subbasin [-]  |
| Tice:  | Ice temperature                     |
|        |                                     |

$$b_{gmlt} = \frac{(b_{gmlt,mx} + b_{gmlt,mn})}{2} + \frac{(b_{gmlt,mx} - b_{gmlt,mn})}{2} \cdot \sin\left[\frac{2\pi}{365}(t - 81)\right]$$

bgmlt,mx:Melt factor June 21 [mm/(d\*C°)]bgmlt,mn:Melt factor December 21 [mm/(d\*C°)]T:Day of year [-]

- Degree-Day Approach like for snow
- Occurs when T<sub>gmlt</sub> exceeded & snow-free
- Albedo of ice < albedo of snow</li>
  - Thus:  $b_{gmlt} > b_{smlt}$
  - If  $b_{gmlt} < b_{smlt}$  then  $b_{gmlt} = b_{smlt}$  (user choice)
- Refreezing factor β<sub>f</sub> to control high melt rates
  - 0-30% of glacier melt able to refreeze
- Ice temperature considered via ice lag factor to offer delay opportunities

Glacier Module: 2. Glacier Evolution

# SWAT+GL: Glacier Evolution

Glacier Evolution = Representation of **spatio-temporal** glacier **dynamics** such as **advance** & **retreat** 



#### Concept

- Annual mass balance changes translated to glacier area changes
  - Elevation-dependent transfer
- Δh-Parameterization (Huss et al. 2008)
  - Rlationship of ice thickness change & elevation

Reference: Huss et al. 2010

# Glacier Evolution: $\Delta$ h-Parameterization

**Δh** = Normalized ice thickness change

- Relationship depends on glacier size!
- Glacier is split in Elevation Sections (ES)

Large valley glaciers

0.4

0.6

Small glaciers

Medium valley glaciers



0.2

Normalized ice thickness change

0.2

0.4

0.6

0.8

1.0

0

SWAT+GL: Technical Implementation

# SWAT+GL: Requirements



Inputs

<del>-</del>--

Preprocessing

#### Data Requirements

- Glacier thickness
- Glacier outlinesInput Files
- 4 new input files
- 5 modified input files



- Define ES spacing
- Modify Land Use map & add new class to crop database
- Determine initial glacier thickness & area per ES



Outputs

#### **Output Files**

- 1 new output file
  - Infos on mass balance estimations
- Modified files w. infos on melt, accumulation etc. for different spatial objects:
  - hru\_wb files
  - Isu\_wb files
  - basin\_wb files





al\_parms.cal

hydrology.hyd

arameters.bsn

file.cio

snow.sno



# SWAT+GL: Example Output Water Balance File

| E.g. bas | in_wb_aa.                              | txt                                      |                          |                                     |                        |                                   |
|----------|----------------------------------------|------------------------------------------|--------------------------|-------------------------------------|------------------------|-----------------------------------|
| MODULAR  | Rev 2024.0<br>precip<br>mm<br>2287.661 | 51.0<br><u>snofall</u><br>MM<br>2086.251 | snomlt<br>MM<br>1159.888 | <mark>glmlt</mark><br>mm<br>967.103 | glacc<br>MM<br>907.794 | <u>surq gen</u><br>mm<br>1418.407 |
|          |                                        |                                          |                          |                                     |                        |                                   |



# SWAT+GL: Preprocessing Land Use Map

#### **Status Quo**



Standard Land Use Map

### What we Need



 Modified Land Use Map Considering Sections of Glacier Elevation Logically, DEM information required here

### SWAT+GL: New Parameters



Glacier

GLMTMP: Glacier melt temperature GLMFMX: Max. glacier melt factor GLMFMN: Min. glacier melt factor F\_frz: Refreezing factor F\_accu: Accumulation factor Gl\_lag: Glacier melt lag factor Tfac\_i: Temperature index factor for HTI/ETI (ice) Rfac\_i: Radiation factor for HTI (ice) Srfact\_i: Short-wave radiation factor for ETI (ice)



Snow

Tfac\_s: Temperature index factor for HTI/ETI (snow) Rfac\_s: Radiation factor for HTI (snow) Srfac\_s: Short-wave radiation factor for ETI (snow) Pr\_fac: Melt factor for rain on snow events F\_exp: Exponential melt factor for ExpTi Tmix\_ul: Mixed precipitation threshold Pthr: Rainfall threshold for additional melt



#### Other

Klat: Lateral hydraulic conductivity *Surlag*: Spatially distributed runoff lag factor *TLAPS:* Spatially distributed temperature lapse rates *PLAPS:* Spatially distributed precipitation lapse rates

#### Note:

Different parameter combinations exist as not all parameters are active but dependent on what concepts uses trigger via the swatgl\_codes file Italic parameters indicate already existing global parameters that were changed to be spatially distributed represented

SWAT+GL: What Can You Expect?

# Example Application: Benchmarking SWAT-GL (SWAT+GL coming soon)



#### Published applications of SWAT-GL (not yet SWAT+GL):

- Merits and Limits of SWAT-GL (2024): Schaffhauser, T., Hofmeister, F., Chiogna, G., Merk, F., Tuo, Y., Machnitzke, J., Alcamo, L., Huang, J., and Disse, M.: Merits and Limits of SWAT-GL: Application in Contrasting Glaciated Catchments, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2024-89, in review, 2024.
- SWAT-GL: A new glacier routine for SWAT (2024): Schaffhauser, T., Tuo, Y., Hofmeister, F., Chiogna, G., Huang, J., Merk, F., & Disse, M. (2024). SWAT-GL: A new glacier routine for the hydrological model SWAT. JAWRA Journal of the American Water Resources Association, 60(3), 755–766. https://doi.org/10.1111/1752-1688.13199

#### High transferability of SWAT-GL results to SWAT+GL!



SWAT+GL: Further Changes

## SWAT+GL: New Snow Concepts

## Snowmelt:



- I. Wet Degree-Day Model (Rain-on-Snow)
- II. Temperature-Index (TI) after *Hock et al. 1999* (HTI)
- III. Enhanced TI after *Pelicciotti et al. 2017* (ETI)
- IV. Exponential TI after Magnusson et al. 2014 (ExpTI)

# Precipitation:

- I. Mixed Precipitation (Rain & Snow)
- II. Seasonally Varying Lapse Rate
- *III.* Snow Redistribution (coming soon)



SWAT+GL: Summary, Limits, Outlook

# SWAT+GL: Challenges & Outlook



Spatial integration via subbasins & land use modification

 Future version: Glaciers "own" object (like gwflow, wetlands etc.)



Further concepts will come!

Permafrost!



**Currently working on official SWAT+ integration** 

Hopefully coming soon!



# Summary & Conclusion

| $\odot$ |  |
|---------|--|
| U       |  |

# SWAT+GL provides built in opportunities to robustly model mountain hydrology

...high applicability in data-scarce environments!

## How to access?







SWAT+GL



Readily & easily accessible to encourage the community to share code and models and to foster model development



We encourage SWAT+GL application in mountain regions to compensate for weaknesses in SWAT+ standard



Via GitLab



SWAT-GL

# Thanks for your attention!

# **Backup Slides**