

Coupling Hydrologic and Water Allocation Models for Basin Scale Water Resources Management Considering Crop Pattern Changes

SWAT Conference New Delhi, July 18-20, 2012

Overview of Presentation

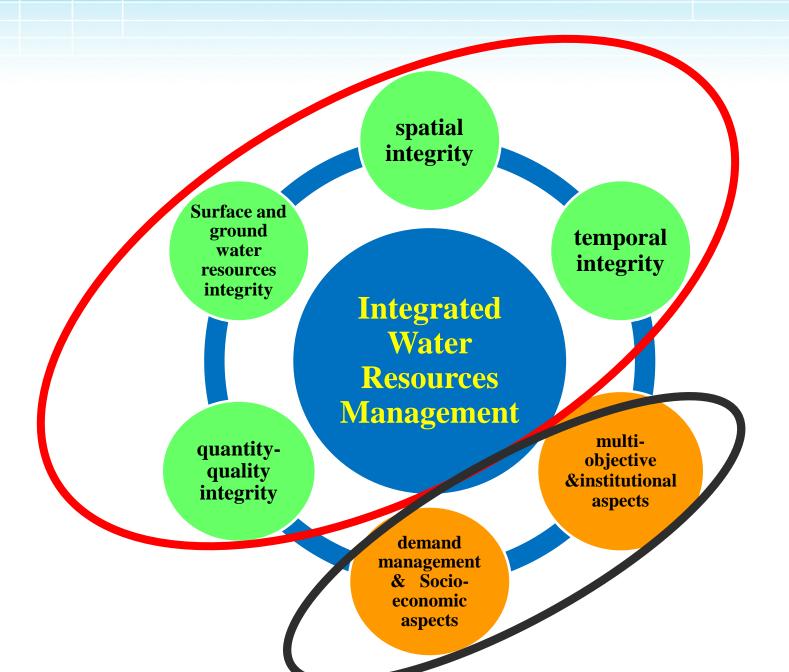
1. Introduction

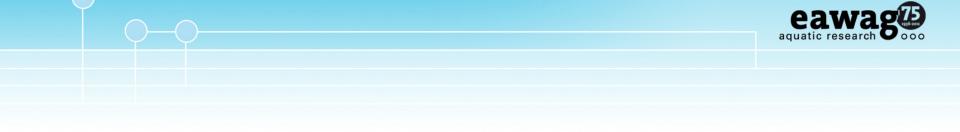
2. Materials and Methods

- 2.1. SWAT & SWAT-CUP
- 2.2. MODSIM
- 2.3. Particle Swarm Optimization
- 2.4. SWAT-MODSIM-PSO
- 2.5.Study Area

3. Results

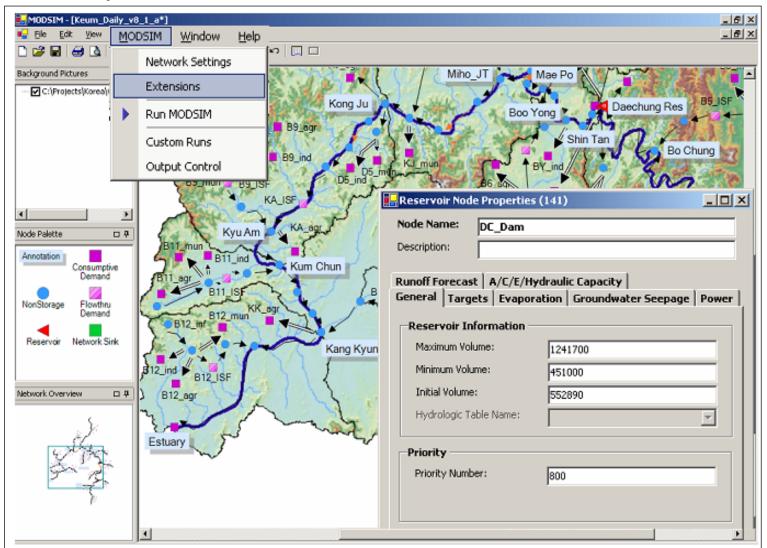
Introduction

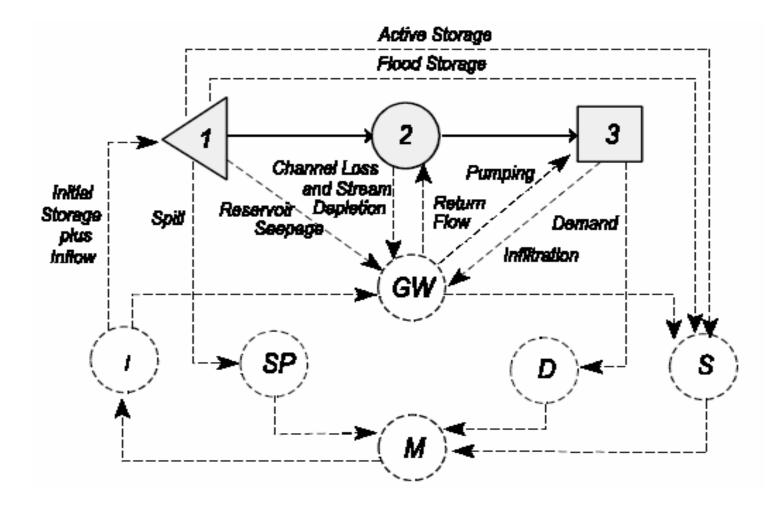

Basin-scale management requires advanced forecasts of the water availability and optimal allocation of water to competitive demands.


Water Availability: Hydrologic Models (SWAT,...)

Water Allocation: Decision Support Systems (MODSIM, WEAP, Mike Basin, ...)

Integrated Water Resources Management


Decision Makers need knowledge of both water availability and optimal water allocation.


MODSIM

MODSIM, a generalized river basin network flow model, developed in Colorado state University in the mid-1970

Network Structure of MODSIM

eawage

MODSIM **sequentially** solves the following optimization problem to optimize the allocation between different users

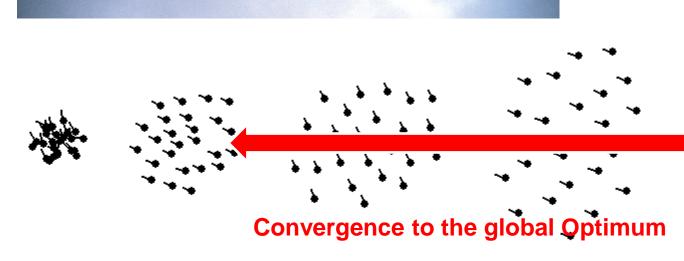
$$Minimize \sum_{l \in A} c_l q_l$$

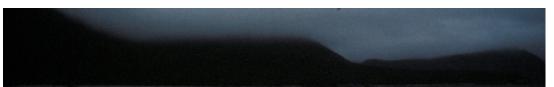
Subject to:

MODSIM

$$\sum_{j \in O_i} q_j - \sum_{k \in I_i} q_k = 0; \quad \text{for all } i \in \mathbb{N}$$
$$l_l \le q_l \le u_l; \quad for \ all \ l \in A$$

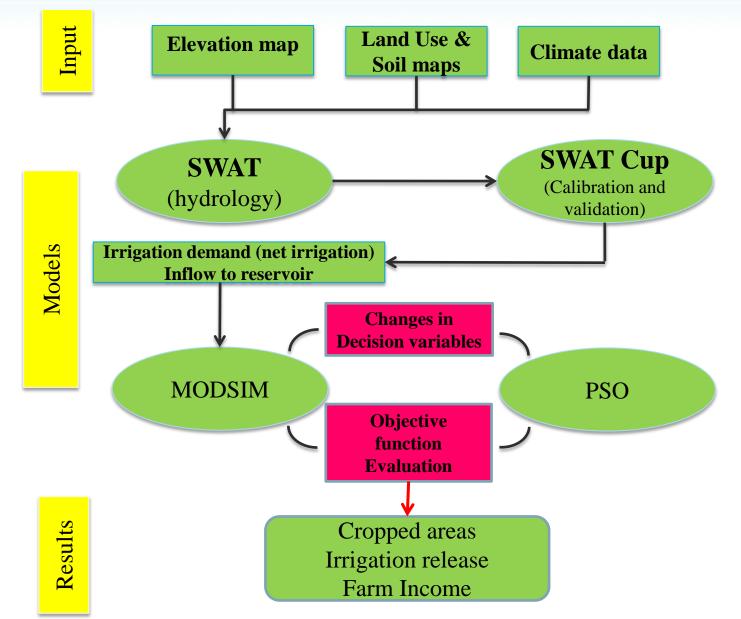
We used Particle Swarm Optimization algorithm to allocate water to different demand sectors in the **entire simulation period** instead of month by month




Particle Swarm Optimization (PSO)

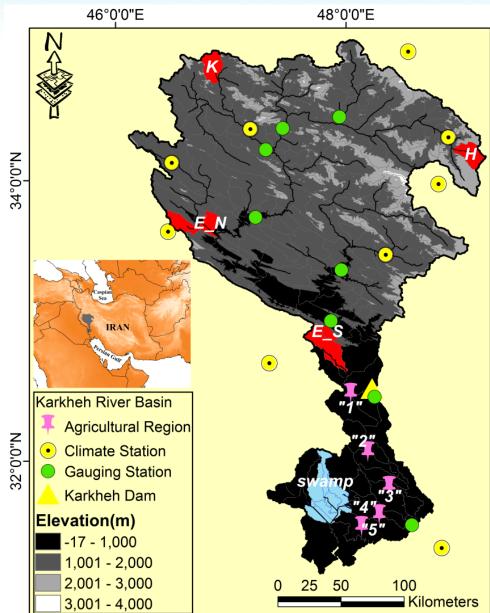
PSO is a stochastic population-based optimization approach, first proposed by Kennedy and Eberhart (1995)

It facilitates simple rules to simulate bird flocking


PSO is an optimizer for nonlinear functions

Flowchart of the SWAT-MODSIM -PSO

Study Area Karkheh River Basin (KRB)


KRB Location: South west of Iran, Middle East, Asia Area: 51000 km² Climate: Semi Arid

Food Basket of Iran

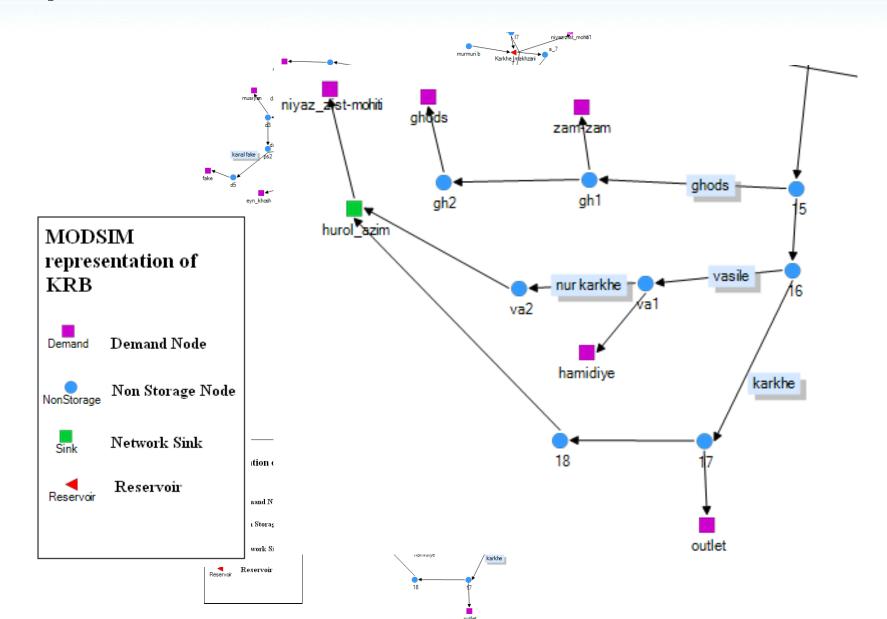
Covers 9% of Iran's irrigated area
Produces 10–11% of the country's wheat

SWAT, SWAT-CUP

Area: 51000 km²

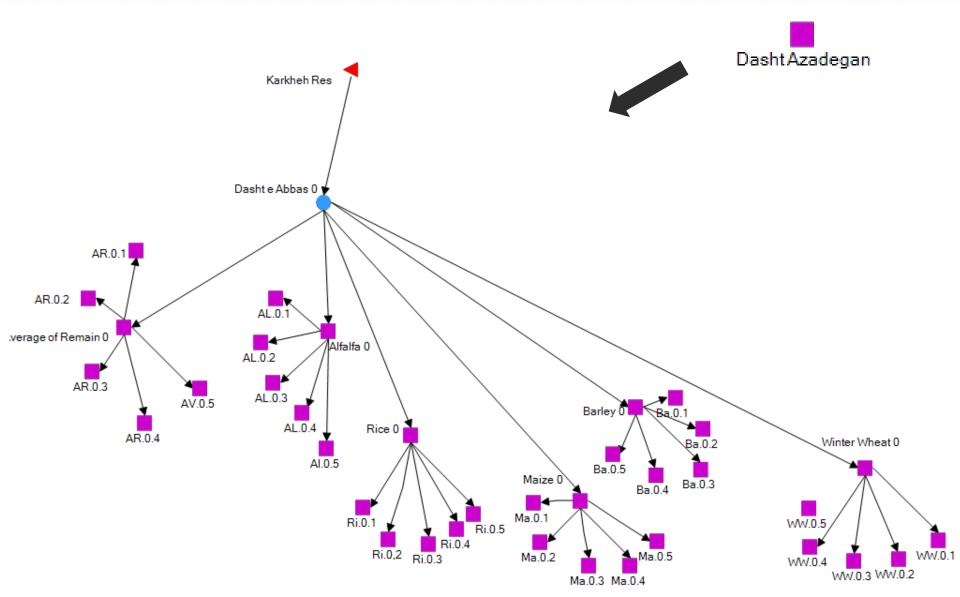
Dem: 90 m Soil: 1 km (FAO, 1995), Land use: 900 m

Gauging station: 8 **Climate Station:** 9


Karkheh Dam's operation start from 2000

Calibration: 1987-2005

validation: 1982-1987



Representation of KRB in MODSIM

MODSIM Adaptation to SWAT

Objective Function

Income =
$$\max_{A_i, R_{ij}} \sum_{i=1}^{n} [P_i(Y_a)_i - (F_i + V_i)]A_i$$

Where:

Income = Total farm income(\$),

 $P = product price (\$ kg^{-1}),$

 R_{ij} = reservoir release to cropped area *i* in time *j*,

Y = yield (kg)

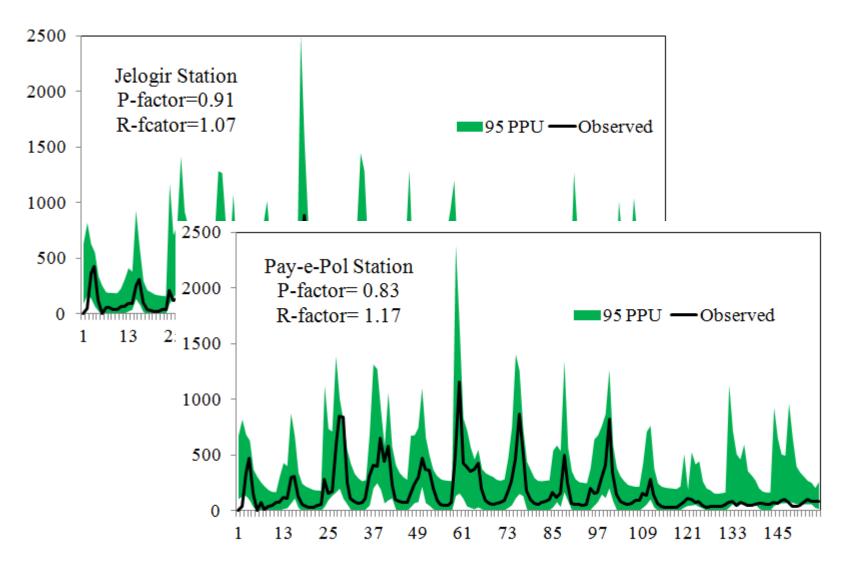
$$A = cropped area (ha),$$

F= fixed cost

V= variable cost

2 main constraint :Maximum and minimum area of each agricultural land and reservoir balance:

$$S_{j+1} = S_j + Q_j - \sum_{i=1}^n 10A_iR_{i,j} - 0.001E_if(S_j) - SP_j + RAIN_j$$



3 scenarios modeled in this study

Scenarios	Conditions	Description
S1	Constraints: 0.6 A _T ≤ A _{wheat} + A _{rice} + A _{maize} + A _{barley} ≤ 0.75 A _T	Continuing the historic trend
S2	Constraints: 0.35 $A_T \le A_{wheat} + A_{rice} + A_{maize} + A_{barley} \le 0.5 \times A_T$	Limit the grain areas to less than 50%
S3	Constraints: $A_0 \le A_{wheat} + A_{rice} + A_{maize} + A_{barley} + A_{other} \le A_T$	No limitation

Results SWAT & SWAT-CUP

Materials and Methods

Calibration and Validation of SWAT

Gauging	Calib	ration	Validation		
Station	P-factor	R-factor	P-factor	R-factor	
Aran	0.75	1.02	0.78	1.19	
Polchehr	0.75	1.04	0.89	1.24	
Ghurbagh	0.84	0.89	0.88	1.11	
Huliyan	0.92	1.08	0.94	1.23	
Afarine	0.92	1.2	0.71	1.28	
Jelogir	0.91	1.05	0.89	1.13	
Pay-e-Pol	0.83	1.17	0.82	1.24	
Hamidiyeh	0.89	1.42	0.97	1.73	

Results

Changing in Crop Pattern for Different Scenarios

	Dashte Abbas & Avan					
Scenarios	Wheat(%)	Maize(%)	Rice(%)	Barley(%)	Other Crops(%)	Income(\$)
Historic	52.6	17.7	6.8	4.7	18.2	27 × 10 ⁶
S1	52	15	3	5	25	25.5 ×10 ⁶
S2	35	20	2	6	37	30×10^{6}
S3	25	29	2	4	40	3 5 × 10 ⁶

	Dolsagh					
Scenarios	Wheat(%)	Maize(%)	Rice (%)	Barley(%)	Other Crops(%)	Income(\$)
Historic	58.6	22.8	0	0	18.6	12.6 ×10 ⁶
S1	60	13	0	3	2	11.9× 10 ⁶
S2	30	33	0	2	35	16.8×10^{6}
S3	41	23	0	0	46	14 × 10 ⁶

Results

Changes in Crop Pattern for Different Scenarios

	Arayez & Bagheh					
Scenarios	Wheat(%)	Maize(%)	Rice(%)	Barley(%)	Other Crops(%)	Income(\$)
Historic	55.3	14.3	9.1	3.3	18	21.6 ×10 ⁶
S1	52	15	2	6	25	20.4×10 ⁶
S2	42	7	3	5	43	24×10 ⁶
S3	39	7	0	2	52	28.8 ×10 ⁶

	Hamidiyeh & Ghods					
Scenarios	Wheat(%)	Maize(%)	Rice(%)	Barley(%)	Other Crops(%)	Income(\$)
Historic	75.3	0.1	5.9	7.7	12	16.2 ×10 ⁶
S1	66	4	0	5	25	15.3 × 10 ⁶
S2	39	12	0	3	46	18×10 ⁶
S3	33	17	0	2	48	21.6 ×10 ⁶

Thank you for your attention