

MyWater

Merging hydrological models and EO data for reliable information on Water

An European SWAT soil database

Pedro Chambel-Leitão

Carina Almeida1, Melanie Weynants2, Gergley Tóth2, Brigitta Tóth3, Ramiro Neves1

- 1 Maretec Technical University of Lisbon Instituto Superior Técnico, Portugal
- 2 European Commission, Joint Research Centre, Institute for Environment and Sustainability, Land Resource Management Unit, Ispra, Italy
 - 3 Department of Crop Production and Soil Science, University of Pannonia, Georgikon Faculty, Keszthely, Hungary

Overview

- Soil hidrology
- European Soil Database (ESDB),
- SWAT database of soils was produced for Europe.
- The SWAT model results in some Portuguese watersheds: Tâmega and Vouga.
- MyWater project (<u>http://mywater-fp7.eu/</u>)

MvV

ter

Soil Water

Continues water distribution in depth

SMU and STU

- Soil typological units (STU): soil type having homogeneous properties over a certain area
- Soil mapping units (SMU): soil association composed of 1 to 10 STUs
- The soil properties are first gathered at the STU level (SWAT database) and are then delivered at the SMU level (Soil map), using the dominant STU.

Mv

European soil database

 The Soil Geographical Database of Eurasia (SGDBE), Pedotransfer Rules Database (PTRDB),

PROGRAMME

2012/03/13

SWAT Soil Database

FIELD	R FILE	DESCRIPTION
SNAM		STU/SMU code
HYDGRP	hydrgrp.R	PTR based on topsoil and subsoil dominant texture classes and depth class
		of an impermeable layer.
SOL_ZMX	solzmx.R	Recode depth class of an obstacle to roots (ROO)
ANION_EXCL		Set to default value: 0.5
SOL_CRK		Set to default value: 0
TEXTURE		Layers texture codes
NLAYERS	solzmx.R	Default to 2.
SOL_Zi	solzmx.R	First layer set to 30 cm, second to SOL_ZMX
SOL_BDi		According to PTR PD_TOP and PD_SUB, set to 1.1, 1.6 or 1.9 g/cm^3
SOL_AWCi		Obtained from HYPRESclass PTF
SOL_Ki		Obtained from HYPRESclass PTF
SOL_CBNi	OC_sub.R	According to OC_TOP, set to 0, 1.5, 4 or 10 $\%$ weight. For subsoil, based
		on Hiederer (2009).
CLAYi	av.text.R	Transform texture class (TEXTSRFDOM and TEXTSUBDOM) into clay,
		silt, sand contents.
$\operatorname{SILT} i$	av.text.R	
$\mathrm{SAND}i$	av.text.R	
$\mathrm{ROCK}i$		According to PTR VS (volume of stone)
SOL_ALB1	albedo.R	Based on SWATxxx.mdb
$USLE_K1$		According to PTR ERODIBILITY and USDA-Agricultural Research Ser-
		vice (2006)
SOL_ECi		Set to default value: 0.
2/03/13		Page 7 Л. Л. Л. Л. МуWater – First*Reporting Peri

APPLICATION TO PORTUGAL

- soils inside watershed are typically sandy (40) % sand, 40% silt and 20% clay) with infiltration capacity above average.
- Area of 325 206 ha

ter

Input used in SWAT

- SRTM DTM,
- Dailly precipitation and monthly for the rest,
- Land Cover (corine 2000)
- River measurments

SWAT models results

SWAT Model Results

• Flow annual analysis

My

SEVENTH FRAMEWOR

HRU based analysis

- Irrigated Corn field
- Soil depth 1200 mm

Irrigation

Run Ref	Min	Max
1200	200	1200

Soil Depth

SEVENTH FRAMEWORK PROGRAMME

Soil Depth

cnday	SW
70	24
82	30
91	40
94	50
96	60
98	70
98	80

CN=85

CN=40

cnday	SW
20	24
24	30
34	40
49	50
64	60
77	70
86	80

SW
143
240
340
440
540
640
740

cnday	SW
20	143
50	240
78	340
92	440
97	540
99	640
99	740

Soil Depth

Run Ref	Min	Max
0.14084	0.113	0.296

AWC tests

Run Ref	Min	Max
1.49	0.62	1.582

BD tests

SEVENTH FRAMEWORK PROGRAMME

Min	Max	Run Ref
0.94667	25	5.025

K tests

K tests

Whatis MyWater about

MyW&ter

Background

- Nowadays there is an increased capability to measure and to forecast;
- There is a need for tools capable to extract useful information from the large amounts of data;

There is need to be able to act more promptly and adequately in case of an incident and to be able to improve the systems management;

Actions

- Focus on prevention, instead of the traditional reactive approach, making use of advanced data mining and modelling;
- Improvement of the systems intelligence in order to able them to **automatically** detect anomalies and provide support to proper actions.

Provide tools capable to integrate real time data and models and, by this way, make available an increased capability of data analysis, malfunctions detection and anticipation and acting accordingly.

Mv

First step: data management

Most users already have high amounts of data that, most of times, have potentialities to produce added value information (e.g., pumping efficiency analysis, malfunctions identification, consumption profiles, etc.)

One of the prime reasons preventing a more common use of these data sets to help operation and management is that the importing and treatment process is often too complex to the "common" user.

SOLUTION: provide proper tools that remove this complexity from the hands of the users.

Second step: move the models to the operation room

Models are traditionally used for project and planning

Usually they have complex interfaces that are not suitable for an operational use

> SOLUTION: Provide proper operational working environments

Models add forecast capabilities

MyWater project

• MyWater at a glance

MyWater project

MyWater

Acc EVTP each 6 hours

LAI tests

Acknowledgments

 This work was financed by European Union FP7 program

MyWater

http://mywater-fp7.eu/

