

C. MacAlister¹, S. Seyoum¹, D. Fuka², Z. Easton³, T. Steenhuis²

¹ IWMI East Africa and Nile Basin
² Cornell University
³ Virginia Tech

2012 International SWAT Workshops and Conference 16th – 20th July2012, IIT Delhi, India

www.iwmi.org

- Modeling landscape processes requires detailed climatic and geographic datasets
- Meteorological stations in most parts of Africa are very sparse and most watersheds are un-gauged
- Climate records are incomplete; high percentage of missing data and relevant variables
- Poor data accessibility due to lack of data sharing agreement among trans-boundary riparian countries)
 - → High-resolution global reanalysis data for SWAT modeling applications in Africa

Study Area

Blue Nile:176,000 km² (Tana Basin)200,000 km² (all Blue Nile)

Altitude range: 500 masl @ Sudan border 1,800 masl @ Lake Tana

Annual Rainfall: 780-2,200mm 70% June-September

Tmax: 10-38°C

PET: 1,000 – 2,280mm

Flow: 1,410 - 1964 m³s⁻¹ border (44.5 - 61.9B m³) 80% July-October

Improving water and land resources manage

Gumera: CFSR vs. Gauge Data 1

Gumera: CFSR vs. Gauge Data 2

v = 0.7194x + 42.827Station $R^2 = 0.8173$ **CFSR**

Gumera CFSR v Station_areal_monthly: 1997-2005

www.iwmi.org

s and nature

Improv

- Weather generator files for areas with missing and incomplete climate datasets
 - Solar radiation, relative humidity, wind speed
 - Maximum half-hour rainfall
- SWAT weather input files for un-gauged watersheds
- Climate downscaling and bias correction
- Study of large-scale water and energy fluxes

• Strict sense simple scaling property: the probability distribution of maximum rainfall depth is invariant of time scale (Burlando and Rosso, 1996)

$$H_{\lambda D} \stackrel{d}{\approx} \lambda^{\eta} H_{D}$$

• Wide sense simple scaling property: extends the scaleinvariant property to quantiles and moments

$$h_t(\lambda D) = \lambda^{\eta} h_t(D)$$

• If the **reference duration is 1hr**, then $\eta = D$

$$h_t(D) = D^{\eta} h_t(1)$$

Maximum Half-hour Rainfall - 2

Maximum Half-hour Rainfall - 3

Maximum Half-hour Rainfall - 4

CFSR for SWAT Modeling - 1

www.iwmi.org

CFSR for SWAT Modeling - 2

www.iwmi.org

CFSR for Spatial Downscaling

CFSR for Water Fluxes Study

(percentage of water fluxes relative to rainfall in wet season)

a) Canopy Evap $^{\circ}$ Latitude,

b) Transpiration

c) Bare Soil Evap

d) Surface Runoff

- High resolution reanalysis data had great potential to improve modeling of landscape processes
- CFSR data has comparable performance as gauged climate data for SWAT modeling in Ethiopian highlands
- The spatial pattern of CFSR data is useful for spatial downscaling and bias correction of GCM data
- The water fluxes of the CFSR data could be to study largescale fluxes without doing cumbersome data assimilation

