Analysis of Runoff Impact by Land Use Change Scenarios in an Urbanizing Watershed Using SWAT Model

July 20, 2012

YU, Young-Seok*

Graduate Student

KIM, Sang-Ho / LEE, Joon-Woo

PhD Candidate / Researcher

KIM, Seong-Joon

Professor

- □ Introduction
- □ Land Use Change model, CLUE-s
- The Future Land Use scenarios
- **SWAT Calibration and Validation**
- The Impact on Watershed Hydrology
- Conclusion

Urban Role in World Mess

2%

- **2**% of world's surface area is made up by cities.
- **B** 80 % of world's economic output is produced by cities.
- Cities are responsible for more than 70% of global greenhouse gas emissions.
- Cities account for 60-80 % of the world's energy consumption.
- □ 200 yrs ago, just 3 of 100 lived in cities.

80%

In 2020, 80 % of the population in developed counties and 51 % in developing counties will live in cities.

THE TIMES OF INDIA NEW DELHI WEDNESDAY, JULY 18, 2012

The cities, Seoul & others

Purpose of this Study

- In South Korea, half of the populations (25 million) lives in and near around Seoul metropolitan area. For decades, the urbanization has been progressed with Seoul as the center of politics, economy, culture, and education etc.
- As Seoul has been already saturated, the government has tried to build new cities as a satellite function. Notwithstanding those efforts, because there are still many problems to be solved, recently the government determined to move the administration function to other place (Sejong) from Seoul by the political decision.
- Seoul has been expanding mainly to the South direction. The study area, <u>Anseong</u> is located between Seoul and <u>Sejong</u>.
- We try the possible land use changes of future Anseong and evaluate the hydrologic impacts of the area.

Flowchart of this study

Study Area

Study Area 2020 LU plan by LC

Land Use Change Prediction Model

CLUE-s (Conversion of Land Use and its Effects)

- The Conversion of Land Use and its Effects at Small regional extent(CLUE-s) was developed to simulate land use change.
- The model is subdivided into two distinct modules, namely a non-spatial demand module and a spatially explicit allocation procedure.
 - The non-spatial module calculates the area change for all and use types
 - The spatial module are translated in to land use changes at different locations with in the study region

<case study>

- Oh et al. (2010)
- : Prediction of paddy field change based on climate change scenarios using the CLUE model, *Paddy and Water Envion.*
- Park et al. (2011)
- : Assessment of MIROC3.2 Hires climate and CLUE-S land use change impacts on watershed hydrology using SWAT, *Trans. ASABE*

CLUE-s data

CLUE-s regression results

- The probability maps of each land use type were prepared from the logistic regression results.
- Forward stepwise logistics regression and relative operating characteristics analysis between 6 land use types and 9 driving factors.

Driving Eactor	Land Use Type							
Driving racio	Water	Urban	Bare Field	Grass	Forest	Agriculture		
Aspect	-0.0016		0.0007					
DEM	0.0053	-0.0002				0.0004		
Distance to Highway	0.0002	-0.0003	-0.0002		0.0001	-0.0001		
Distance to Local road	-0.0009	-0.0003		0.0003	0.0004	-0.0004		
Distance to Nat'l road	0.0002	-0.0091	-0.0001	-0.0001	0.0001	-0.0001		
Slope	-0.0223	0.0025						
Soil depth	-0.0034	0.1883	0.0033		-0.0069	0.006		
Soil group	0.3488				-0.4275	0.3842		
Soil type	-0.0004		0.0002		-0.0001	0.0001		
Constant	-6.5259	-1.2974	-2.8541	-4.2096	0.19	-1.2488		

The past land uses

The past land use changes by suing Landsat image classification

The expanding urban area (red color)

Three Land use Change Scenarios

Predict future land use changes Using 3 possible scenarios (Logarithmic, Linear, Exponential)

2040s & 2080s spatial land uses

2040s & 2080s Land uses summary

4 km² (%)

Scenario	os	Water	Urban	Bare field	Grass	Forest	Agricul- ture
Past	1985	4.7 <mark>(-2.1)</mark>	9.9 <mark>(-51.5)</mark>	2.6 <mark>(-70.2)</mark>	6.2 <mark>(-62.9)</mark>	181.5 (+3.0)	152.0 <mark>(+28.5)</mark>
Baseline	2000	4.8	20.4	12.2	16.7	176.3	127.6
Logarithmic (Low) 20	2040	4.8 (+0.0)	30.9 (+51.4)	24.6 (+101.5)	46.9 (+180.4)	148.4 (-15.8)	102.4 <mark>(-19.7)</mark>
	2080	4.8 (+0.0)	32.9 (+61.2)	40.0 (+227.6)	73.8 (+341.1)	127.8 (-27.5)	78.8 <mark>(-38.3)</mark>
Linear	2040	4.8 (+0.0)	42.7 (+109.0)	24.6 (+101.5)	46.9 (+180.4)	150.4 <mark>(-14.7)</mark>	88.7 <mark>(-30.5)</mark>
(Medium)	2080	4.8 (+0.0)	65.4 (+220.1)	40.0 (+227.6)	73.8 (+341.1)	123.7 <mark>(-29.8)</mark>	50.4 <mark>(-60.5)</mark>
Exponential (High)	2040	4.8 (+0.0)	44.6 (+118.5)	24.6 (+101.5)	36.9 (+120.6)	148.4 (-15.8)	98.7 <mark>(-22.6)</mark>
	2080	4.8 (+0.0)	90.8 (+344.7)	25.0 (+104.8)	43.8 (+161.7)	103.9 (-41.0)	89.7 <mark>(-29.7)</mark>

2040s & 2080s SCS Curve Number

SWAT Model

SWAT (Soil and Water Assessment Tool)

- SWAT is a continuous, long-term, and distributed-parameter model designed to predict the impact of land management practices on the hydrology.
- SWAT subdivides a watershed into sub-basin connected by a stream network, and further delineates HRUs (hydrologic Response Unit) Consisting of unique combinations of land cover and soils within each sub-basins

Reservoir water balance

Soil & Water SWAT

$$V = V_{\textit{stored}} + V_{\textit{flowin}} - V_{\textit{flowout}} + V_{\textit{pcp}} - V_{\textit{evap}} - V_{\textit{seep}}$$

$$V_{flowout} = 86400 \cdot q_{out} [runoff ratio, m^3/s] (m^3H_2O)$$

Preparation of input data

Data Set	Source	Scale	Properties		
DEM	Korea National Geography Institute	1/5,000	Digital Elevation Model (DEM) ; 100 X 100 m		
Soil	Korea Rural Development Administration	1/25,000	Soil classifications and physical properties such as bulk density, texture, and saturated conductivity.		
Land use	Landsat TM Satellite Image in 2000	30m	Land use classifications such as paddy, grass, and forest.		

Two agricultural reservoirs included in SWAT

- ***** SWAT reservoir operation
- ✤ Daily release data for the two reservoirs were used . (1998-2006)

	Gosam re	servoir
	Total storage Usable storage Area of full water Benefit area	 16,105 10³ m³ 15,217 10³ m³ 2.79 km² 29.8 km²
	Geumg	wang
	reserv Total storage Usable storage Area of full water Benefit area	Oir : 12,095 10 ³ m ³ : 12,047 10 ³ m ³ : 1.51 km ² : 19.3 km ²

SWAT Calibration and Validation

✤ Calibration period : 2000-2002 / Validation period : 2003-2005

Statistic		Calibration			Validation			Ava
Stati	SUC	2000	2001	2002	2003	2004	2005	Avg.
Evaluation	RMSE (mm/d)	3.97	1.53	2.27	1.43	3.15	2.39	2.46
criteria	R ²	0.80	0.77	0.94	0.83	0.80	0.64	0.80
	NSE	0.79	0.71	0.92	0.87	0.78	0.61	0.78
							() Come	UNIVERSITY

Subwatershed 7 Runoff ratio : 2000 52.6%, Exponential 56.4%

Y

Predicted hydrologic components – Surface Runoff, Groundwater Recharge

Predicted hydrologic components – Evapotrasspiration, Streamflow

Logarithmic (Low) Linear (Medium)

Years		Curve number	ET (mm)	Surface Runoff (mm)	Groundwater Recharge (mm)	Streamflow (mm)
1985		57.1 <mark>(-1.8)</mark>	494.5 (+0.7)	233.7 <mark>(-0.5)</mark>	188.4 (-0.8)	674.4 (-0.5)
2000 (Baseline	e)	58.9	491.0	235.0	189.9	677.7
Logarithmic	2040s	58.9 (+0.0)	490.3 (-0.2)	232.8 (-0.9)	187.5 (-1.2)	678.4 (+0.1)
(Low)	2080s	59.9 (+1.0)	489.8 (-0.3)	226.2 (-3.7)	194.2 (+2.3)	678.4 (+0.1)
Linear	2040s	59.1 (+0.2)	486.3 (-0.9)	237.4 (+1.0)	187.6 (-1.2)	682.4 (+0.7)
(Medium)	2080s	59.6 (+0.7)	480.5 (-2.1)	245.2 (+4.3)	187.3 (-1.4)	688.0 (+1.5)
Exponential (High)	2040s	60.7 (+1.8)	487.6 (-0.7)	247.1 (+5.2)	178.5 <mark>(-6.0)</mark>	681.7 (+0.6)
	2080s	62.5 (+3.6)	481.9 <mark>(-1.9)</mark>	288.0 (+22.6)	158.4 <mark>(-16.6)</mark>	688.6 (+1.6)

Conclusion

For the 3 scenarios of future land use, the followings are the key summaries for the study watershed.

Land Use Change Scenario		Curve Number	Urban Area (km²)	Surface Runoff (mm)	Groundwater Recharge (mm)
2000 (Baseline)		58.9	20.4	235.0	189.9
Logarithmic (Low)	2040s	58.9 (+0.0)	30.9 (+51.4)	232.8 <mark>(-0.9)</mark>	187.5 <mark>(-1.2)</mark>
	2080s	59.9 (+1.0)	32.9 (+61.2)	226.2 (-3.7)	194.2 <mark>(+2.3)</mark>
Linear (Medium)	2040s	59.1 (+0.2)	42.7 <mark>(+109.0)</mark>	237.4 (+1.0)	187.6 <mark>(-1.2)</mark>
	2080s	59.6 (+0.7)	65.4 <mark>(+220.1)</mark>	245.2 (+4.3)	187.3 <mark>(-1.4)</mark>
Exponential (High)	2040s	60.7 <mark>(+1.8)</mark>	44.6 <mark>(+118.3)</mark>	247.1 <mark>(+5.2)</mark>	178.5 <mark>(-6.0)</mark>
	2080s	62.5 (+ 3.6)	90.8 (+344.7)	288.0 (+22.6)	158.4 <mark>(-16.6)</mark>

- For the whole watershed, the linear scenario seems marginal. The exponential scenario should be escaped.
- If we look at the subwatershed scale, even logarithmic, the subwatersheds 5, 7, 10, 11 become more vulnerable for flood and stream baseflow.

"Thank You"

For further information, please contact:

Yu, Young Seok

Master Course, Dept. of Rural Engineering, Konkuk University presto11@konkuk.ac.kr

Dr. Kim, Seong Joon

Professor, Dept. of Civil & Environmental System Engineering, Konkuk University kimsj@konkuk.ac.kr

We're on the Web!

See us at:

http://konkuk.ac.kr/~kimsj/

Earth Information Engineering Laboratory

