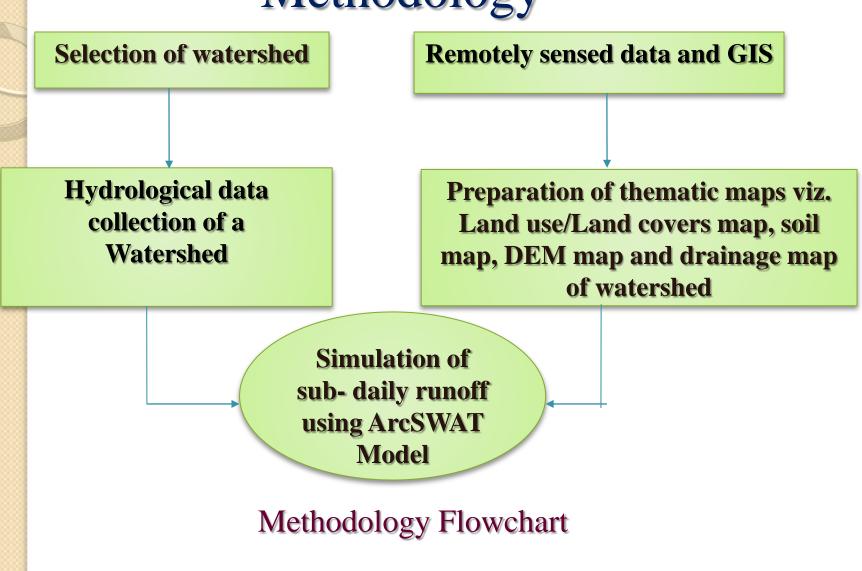
SIMULATION OF SUB-DAILY RUNOFF FOR AN INDIAN WATERSHED USING ArcSWAT MODEL

2012 INTERNATIONAL SWAT CONFERENCE NEW DELHI, INDIA JULY 16-20, 2012

T. Reshma¹, K. venkata Reddy², Deva Pratap³

Introduction

- SWAT model is a hydro-dynamic and physically-based hydrologic model.
- Geographic Information System (GIS) provides the framework within which spatially-distributed data are collected and used to prepare model input files and to evaluate model results.


Literature Review

- Arnold et al. (1999) presented two methods of simulating excess rainfall on a large basin with multiple rain gages and compared the simulations.
- Simic et al. (2009) studied the application of SWAT in modeling of the rainfall runoff Process.
- Arnold et al. (2010) presented the development and testing of a sub-hourly rainfall-runoff model in SWAT.

Objectives

- The objective of the study is to simulate the sub-daily runoff using ArcSWAT model.
- Harsul watershed has been selected and relevant hydrological data has been collected.
- Remotely sensed data and GIS have been used to prepare the thematic maps of the watershed.

Methodology

Location map and Study area of the Harsul Watershed

➢Harsul watershed is located in Nashik district, Maharashtra, India.

The watershed has an area of 10.929 sq. km.

➢It is situated between East Longitude of 73° 25′ and 73° 29′ and the North Latitudes of 20° 04′ and 20° 08′.

SWAT Model Description

- The model setup involves the following five steps:
 - Watershed delineation
 - HRU definition
 - Weather data definition
 - Edit SWAT input
 - Run SWAT.

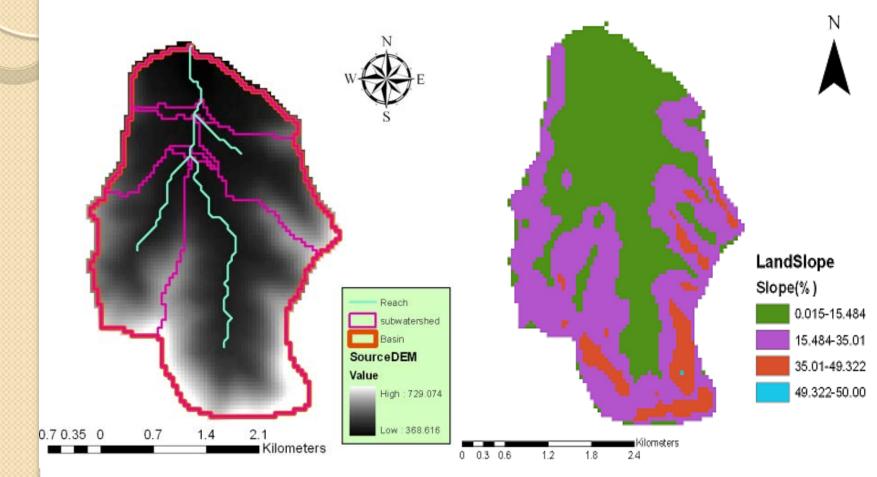
<u>a</u>				
S W	aters	ned D	elinea	tion

DEM Setup	Outlet and Inlet Definition
F:\arcswat_harsuellSWATharsuel_12\RasterStore.mdb\	C Subbasin outlet C Inlet of draining watershed
DEM projection setup	C Point source input Add point source Add by Table
Mask Burn In F:\arcswat_harsuel\SWATharsuel_12\Raste	
Stream Definition	Watershed Outlets(s) Selection and Definition
 DEM-based Pre-defined streams and watersheds 	Whole watershed Cancel
DEM-based	outlet(s)
Flow direction and accumulation	Delineate watershed
Area: (5 - 1046) [Ha]	
Number of cells: 400	Calculation of Subbasin Parameters
Pre-defined Watershed dataset:	Calculate subbasin output Skip stream
Stream network	geometry check Skip longest flow path calculation
Create streams and outlets	Number of Outlets: 7 Exit Minimize Number of Subbasins: 7

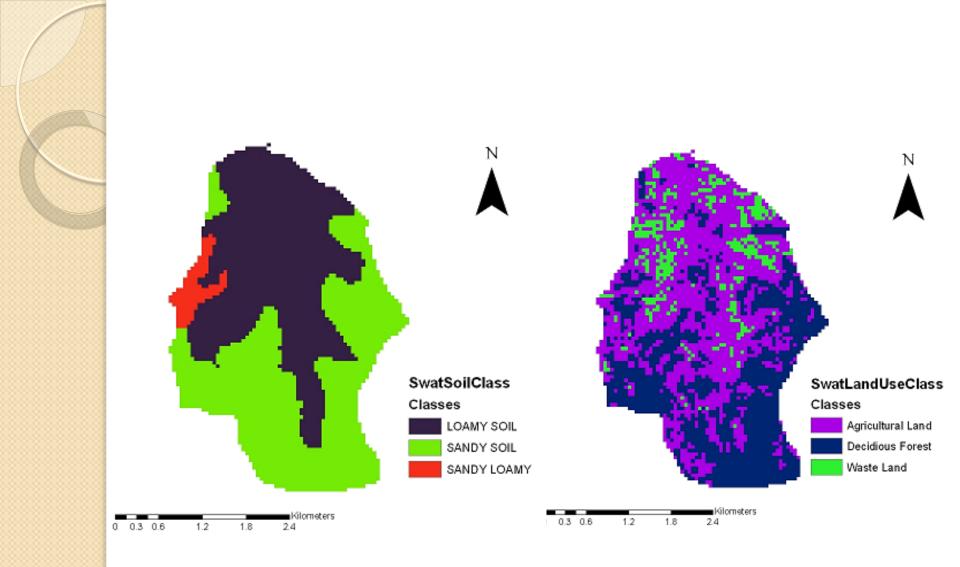
Menu for Automatic Delineation of Watershed in ArcSWAT model

S Land Use/Soils/Slope Definition	
Land Use Data Soil Data Slope	
LookUp Table Table Grid Values> Land Cover SWAT Land Use Classification Table	
Reclassify	
Create HRU Feature Class Overlay Canc	el

Menu for Hydrologic Response Unit Analysis in ArcSWAT model

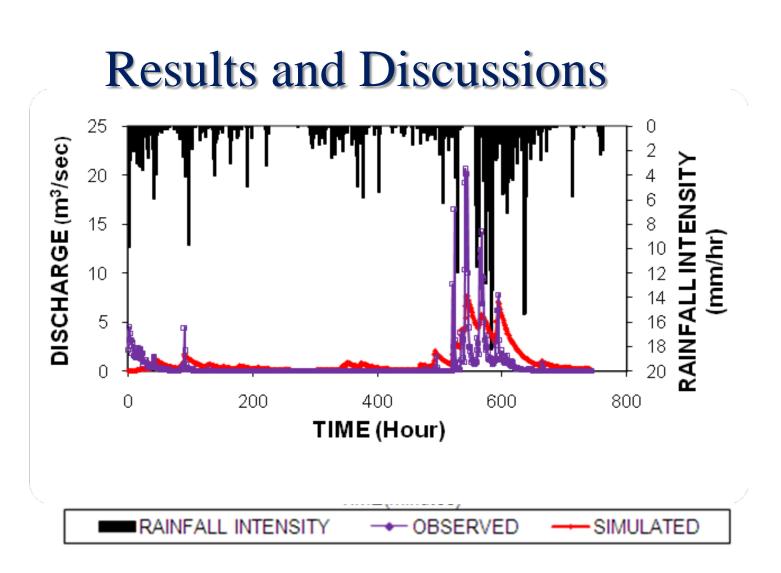

😌 Weather Data D	efinition	
Solar Radiation Data	Wind Speed Data ^{ta} Rainfall Data Temperature Data F	Relative Humidity Data
Load US or custom US Database C Custom Database Locations Table:	weather database to continue	
	OK	Cancel

Menu for Weather Data Definition in ArcSWAT model

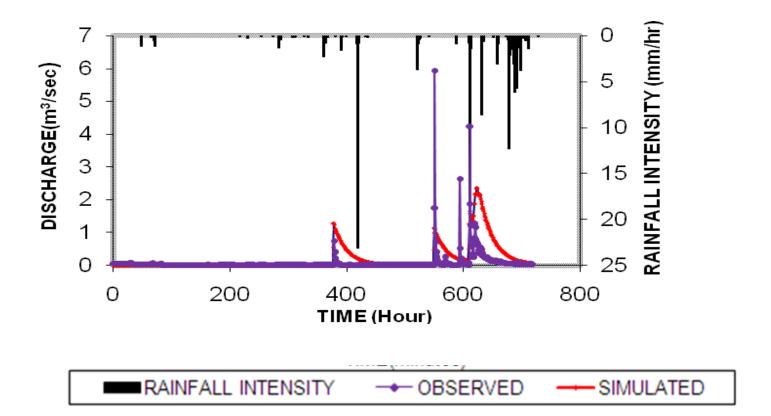

😌 Setup and Run SWAT Model Simulatio	n	
Period of Simulation		
Starting Date : 6/1/2000	Ending Date : 6/30/2000	📑 🔲 Simulate Forecast Period
Rainfall Sub-Daily Timestep Timestep: Minutes	Forecast Period Starting Date :	Number of Simulations:
Rainfall Distribution Image: Skewed normal Image: Mixed exponential		Print Vel./Depth Output 🔽 Print Hourly Output Print Pesticide Output 🦳 Print Soil Storage
SWAT.exe Version © 32-bit, debug © 32-bit, release © 64-bit, debug © 64-bit, release © Custom (swat2009User.exe)	Print Binary Output	Print Log Flow Route Headwaters Print Soil Nutrient Imit HRU Output Print Snow Output
Deposition File: ATMO.ATM	Setup	SWAT Run Run SWAT Cancel

Menu for Setup and Run SWAT model simulation

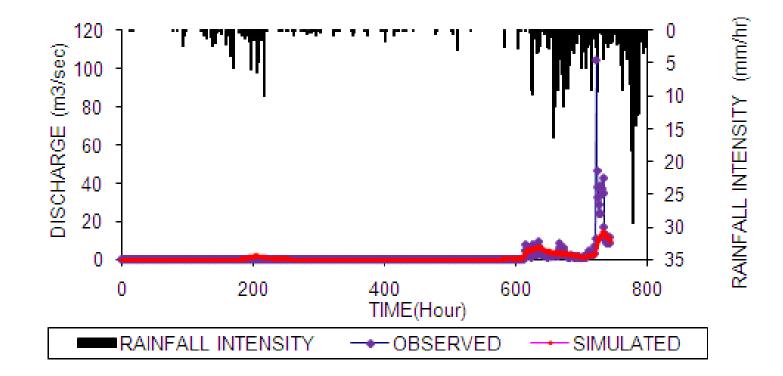
SWAT Model Application



Automatically delineated sub-basins Harsul watershed Modified Slope map of Harsul watershed



Modified Soil map of Harsul Watershed


Modified LU/LC map of Harsul Watershed

Simulated and Observed hydrographs for the Harsul watershed (July 1997)

Simulated and Observed hydrographs for the Harsul watershed (September 1997)

Simulated and Observed hydrographs for the Harsul watershed (August 1997)

Table 1. Simulation results for Harsul watershed

Rainfall months		Volume of runoff (mm)		Peak runoff (m ³ /sec)		Time to peak (Hour)	
		Observed	Simulated	Observed	Simulated	Observed	Simulated
July,	1997	307.76	242.21	104.784	12.9	723	730
Augus	st,1997	143.24	247.36	4.437	1.67	91	91
	mber, 97	16.71447	47.42	5.935	2.37	551	623

Conclusions

- The model has been applied for the three month's rainfall data.
- From the simulations, it is observed that, the model is able to simulate the volume of runoff and time to peak runoff. But large variations are observed in peak runoff.
- This may be because of inexactness in the values of parameters.
- It is also observed that sensitivity analysis has to be carried out to improve the simulation results.
- The methodology presented in this study is useful to simulate hourly runoff in Indian watersheds using ArcSWAT models.

References

- Arnold, J.G., R. Srinivasan, R. Jayakrishnan, and C. Santhi. 2005. Advances in the application of the SWAT model for water resources management. *Hydrological Processes*. *19*, 749-762.
- Birhanu, B.Z., P.M. Ndomba, and F.W. Mtalo. 2007. Application of SWAT Model for Mountainous Catchment. *Catchment and Lake Research*.
- Bijan. D., R. Srinivasan, and G.S. Shimelis. 2008. Hydrological Modelling in the Lake Tana Basin, Ethiopia Using SWAT Model. *The Open Hydrology Journal*, *2*, 49-62.
- Jeong. J., N. Kannan, J. Arnold, R. Glick, L. Gosselink, and R. Srinivasan.2010. Development and Integration of Sub-hourly Rainfall–Runoff Modeling Capability Within a Watershed model. *Water Resour Manage. Accepted: 6 May.*
- Reshma T., K. Venkata Reddy and Deva Pratap. 2011. Simulation of runoff of a watershed using ArcSWAT model. *In Proc. International Conference on Spatial Technologies for Rural Development/Watershed Development*.
- Srinivasan, R., X. Zhang, and J. Arnold. 2010. SWAT ungauged: hydrological budget and crop yield predictions in the upper mississippi river basin. *American Society of Agricultural and Biological Engineers*. *Vol.* 53(5): 1533-1546.
- Venkata Reddy. K, Eldho. T. I, Rao. E.P. and Kulkarni, A.T. (2011), FEM-GIS based channel network model for runoff simulation in agricultural watersheds using remotely sensed data, *International Journal of River Basin Management*, 9(1), 17-30.

Thank u