Comparison of Grid-based and SWAT HRU Modeling Approaches for Evaluating the Climate Change Impact on Watershed Hydrology

19 July 2012

JUNG, Hyuk Graduate Student

HONG, Woo-Yong / Jeong, Hyeon Gyo Researcher / Meteorological Research Scientist

KIM, Seong-Joon Professor

Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea

2012 SWAT Conference

INDEX

- 1. Introduction
- 2. Models Description
- 3. Models Calibration & Validation
- 4. Climate Change Scenarios & Bias Correction
- 5. Climate Change Impact on Hydrological Components
- 6. Comparison of Model Results
- 7. Concluding Remarks

Purpose

• Hydrology model started from lumped model such as HEC-HMS has been developed to HRU distributed model such as SWAT and SLURP, and cell-based distributed model such as VIC and Vflo^{TM.}

Distributed model has advantages to represent and understand the happenings of hydrological behavior in the watershed.

For climate change impact assessment on hydrology of South Korea, we are trying to develop a model, grid-based continuous hydrological model.

In this study, we are presenting our model in developing stage and validate the modeling efficiency comparing with SWAT results.

Soil and Water Assessment Tool (SWAT)

- SWAT is a physically-based continuous, long-term, semi-distributedparameter model designed to predict the effects of land management practices regarding the hydrology, sediment and contaminant transport in agricultural watersheds under varying soils, land use and management conditions (Arnold et al., 1998).
- SWAT subdivides a watershed into sub-basin connected by a stream network, and further delineates HRUs (Hydrologic Response Unit) consisting of unique combinations of land cover and soils within each sub-basin.
- ✓ SWAT2005 model version under ArcSWAT 2.0 interface was used in this study.

Grid-based Model

- ✓ <u>3 layers</u>
- ✓ one layer for surface runoff
- $\checkmark\,$ two layers for subsurface and base flow
- ✓ 2nd layer: soil moisture routing
- Runoff : Soil Conservation Service (SCS) method
- ✓ Surface Runoff

$$Q'_{surf} = \frac{(P - 0.2S^2)}{P + 0.8S}, P \ge 0.2S \quad S = PO_e - SM_{t-1}$$

✓ Subsurface flow

$$Q_{latf} = K_{sat} \cdot S_{o}, FC < SM < PO_{o}$$

 $Q_{latf} = 0, SM < FC$

Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea

 Parameters: surlag(Surface runoff lag coefficient), infilt_rt(Soil infiltration ratio, %), per_rt(Soil percolation ratio,%), slp_l(Lateral flow curve slope, mm/day), time_l(Lateral flow basin lag time, day), slp_b, time_b, ini_soil, length_str etc.

Konkuk University, Seoul, South Korea

Data

	Data	SWAT Model	Grid-based Model		
Weather Data	Precipitation (mm)				
	Temperature (°C)	Daily Data	Daily Data		
	Sunshine hour (hour) / Solar Radiation (MJ/d)	/ Text Data	/ Grid Data		
	Wind speed (m/s)	(dbf File)	(ASC File)		
	Relative humidity (%)	(ubi rile)			
Observed Data	Streamflow (mm)	(2001 ~ 2009)	(2001 ~ 2009)		
Observed Dala	Soil moisture (%)				

30m

2012 SWAT Conference, New Delhi, India

Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea

03 Model Calibration & Validation		Streamflow		5	Yongdam (a) N
					Donghyang (b)
Station		Yongdam	Donghyang	Cheoncheon	Carly Contraction
Streamflow	Obs. (mm)	878.8 (59.4%)	845. 7 (57.8%)	945.8 (73.2%)	
SWAT	PCP (mm)	1401.3	1401.3	1478.1	γ
	Sim. (mm)	878.8 (60.3%)	747.9 (50.6%)	824.6 (58.9%)	Cheoncheon (c)
	R ²	0.46	0.71	0.52	
	NSE	0.34	0.55	0.32	0 5 10
Grid- based	PCP (mm)	1478.7	1291.6	1462.6	
	Sim. (mm)	906.9 (61.3%)	880.0 (60.2%)	740.7 (57.3%)	
	R ²	0.85	0.79	0.76	
	NSE	0.82	0.63	0.61	

03 Model Calibration & Validation

Soil Moisture

Soil moisture Station	Soil Type	Land use		
Jangsu	Sandy Loam	Evergreen		
Ancheon	Sandy Loam	Mixed Forest		
Cheoncheon	Loam	Evergreen		
Gyebuk	Sandy Loam	Evergreen		
Bugui	Silt Loam	Evergreen		

Soil moisture	SM	/AT	Grid-based		
Station	R ²	NSE	R ²	NSE	
Jangsu	0.49	0.42	0.36	0.44	
Ancheon	0.76	0.65	0.86	0.52	
Cheoncheon	0.40	0.20	0.47	0.18	
Gyebuk	0.47	0.47	0.67	0.38	
Bugui	0.27	0.15	0.59	0.58	

Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea

04 Climate Change Scenario

04 Climate Change _____ Scenario

Bias Correction

Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea

05 Climate Change

Application

RCP 4.5

Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea

05 Climate Change Impact

(): percent of change based on baseline

	SWAT Model					Grid-based Model				
	Baseline (2001- 2009)	RCP 4.5		RCP 8.5		Baseline	RCP 4.5		RCP 8.5	
		2040s	2080s	2040s	2080s	(2001- 2009)	2040s	2080s	2040s	2080s
PCP (mm)	1443.3	1557.9 (+7.9)	1639.3 (+13.6)	1677.8 (+16.2)	1767.8 (+22.5)	1462.9	1550.4 (+6.0)	1633.4 (+11.7)	1660.2 (+13.5)	1736.4 (+18.7)
ET (mm)	554.0	576.4 (+4.0)	593.4 (+7.1)	581.9 (+5.0)	619.3 (+11.8)	520.8	462.7 (-11.2)	492.4 (-5.5)	455.6 (-12.5)	533.9 (+2.5)
Q _{surf} (mm)	458.9	519.4 (+13.2)	549.4 (+19.7)	587.1 (+27.9)	628.0 (+36.8)	486.0	477.0 (-1.9)	516.0 (+6.2)	542.0 (+11.5)	566.8 (+16.6)
Q _{lat} (mm)	38.5	33.2 (-13.8)	35.7 (-7.3)	37.0 (-3.8)	38.4 (-0.1)	39.5	52.7 (+33.4)	55.3 (+40.2)	59.3 (+50.3)	56.5 (+43.0)
Q _{sub} (mm)	364.8	397.9 (+9.1)	427.9 (+17.3)	434.4 (+19.1)	447.6 (+22.7)	366.9	474.5 (+29.3)	486.5 (+32.6)	509.9 (+39.0)	493.1 (+34.4)
Q _{tot} (mm)	861.5	949.2 (+10.2)	1011.6 (+17.4)	1057.2 (+22.7)	1112.8 (+29.2)	892.4	1004.2 (+12.5)	1057.8 (+18.5)	1111.2 (+24.5)	1116.4 (+25.1)

Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea

Konkuk University, Seoul, South Korea

Konkuk University, Seoul, South Korea

Concluding Remarks

We introduced a grid-based continuous hydrological model. They will be applied to project the future South Korea watershed hydrology by applying climate change scenarios.

• We need more modeling efforts for the underestimated ET and soil moisture routing.

• The model hopes to be called as **PGA-CC** (Projection of hydrology via **G**rid-based Assessment for **C**limate **C**hange), and will be developed as a software at the end of this year (Climate Change Assessment & Projection for Hydrology in Korea).

For further information, contact:

Jung, Hyuk

Graduate student, Dept. of Civil & Environmental System Engineering, Konkuk University <u>shatiya@konkuk.ac.kr</u>

Lap Homepage : http://konkuk.ac.kr/~kimsj/ (Earth Information Engineering Laboratory)

Thank you

This study was supported by the Construction Technology Innovation Program (09-Tech-Innovation -C01) through the Climate Change Assessment and Projection for Hydrology (CCAPH-K) under Korea Institute of Construction & Transportation Technology Evaluation and Planning (KICTEP) of Ministry of Land, Transport and Maritime Affairs (MLTM).

Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea