2012 International SWAT Conference

Impact of Future Climate Change on the Water Resources System of Chungju Multi-purpose Dam in South Korea

19 July 2012

PARK, Jong-Yoon* / JUNG, In-Kyun / Jang, Cheol-Hee / KIM, Seong-Joon

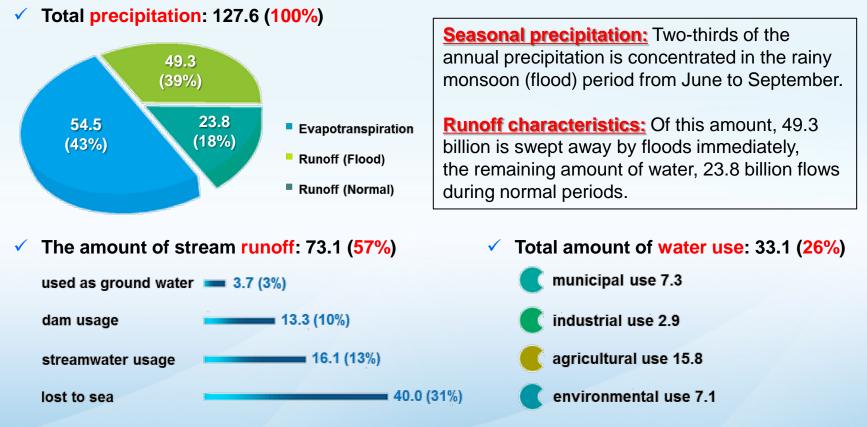
Dept. of Civil and Environmental System Eng., Konkuk University

1. Introduction

2. Modeling Approach

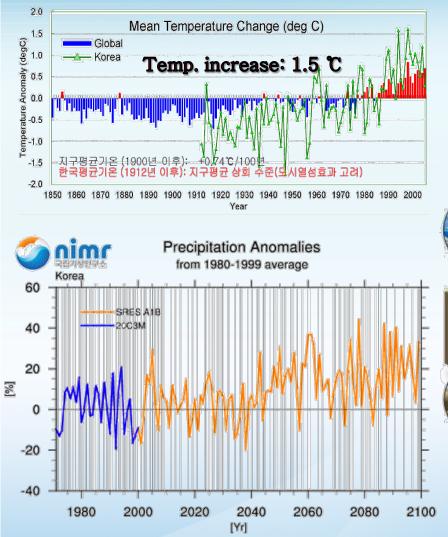
- LARS-WG model
- SWAT hydrological model
- HEC-ResSim reservoir simulation model
- 3. Study Area Description and Data for Model Evaluation
- 4. Climate Change Projections

5. Climate Change Impacts on Water Resources System


- Watershed hydrology
- Hydrological regimes
- Water resources
- Reservoir operation
- Hydropower productions
- 6. Concluding Remarks

Water resources in South Korea

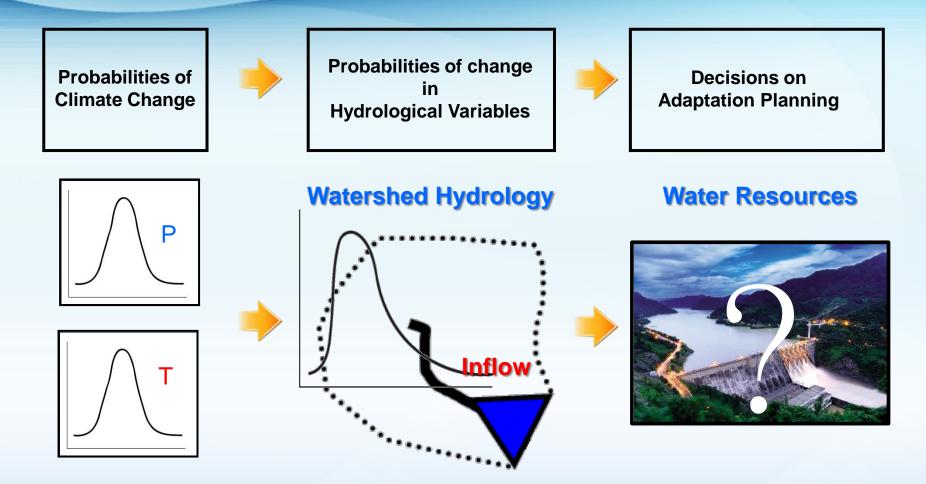
Comparison of country precipitation


	Korea	Japan	USA	England	China	Canada	World average
mean annual precipitation(mm)	1,283	1,728	760	1,064	660	522	973

Status of water use in South Korea (unit: billion m³/year)

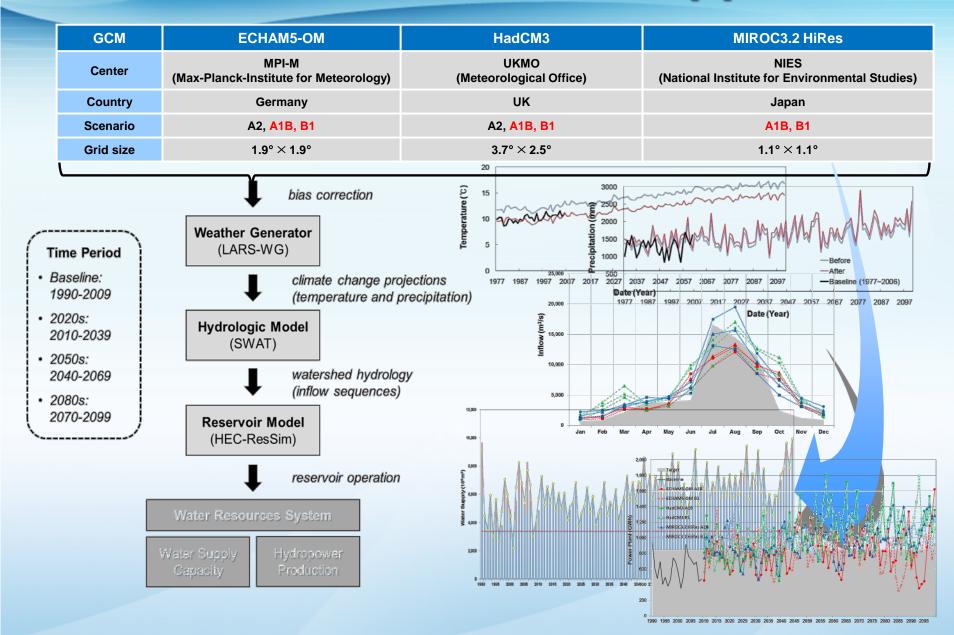
Source: Korea Water Resources Association (http://eng.kwra.or.kr)

Background



A comprehensive climate change impacts assessment for South Korea

한반도 강수편차 (시계열)


Purpose of this study

The purpose of this study is...

to evaluate the future potential climate change impacts on hydrology and water resources system of Chungju multi-purpose dam in South Korea.

Multi-model ensemble approach

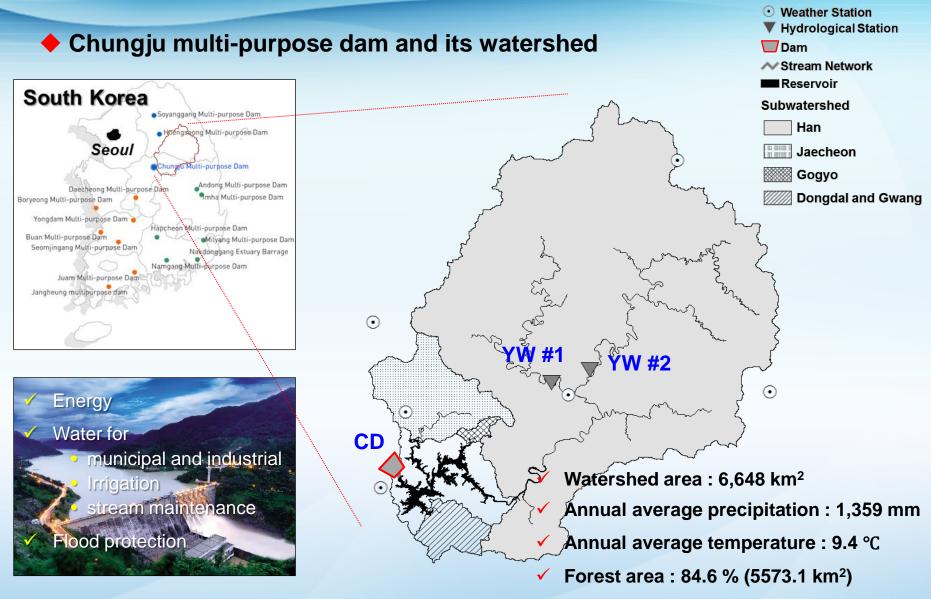
Models application

LARS-WG stochastic weather generator (Semenov et al., 1998)

- Generation of synthetic series of daily weather data at a local site (daily precipitation, maximum and minimum temperature, and daily solar radiation)
- ✓ Procedure:
 - Use semi-empirical probability distributions to describe the state of a day (wet or dry)
 - Use semi-empirical distributions for precipitation amounts (parameters estimated for each month)
 - Use normal distributions for daily minimum and maximum temperatures
 - · Use semi-empirical distribution for daily solar radiation

HEC-ResSim reservoir system analysis (USACE, 2007)

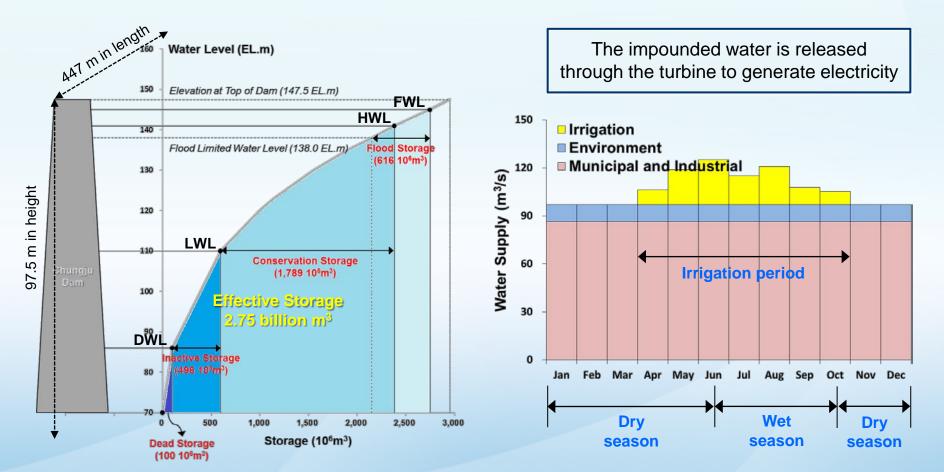
- HEC-ResSim uses an original rule-based approach to mimic the actual decision-making process that reservoir operators must use to meet operating requirements for flood control, power generation, water supply, and environmental quality
- Procedure:
 - Simulates reservoir operations for flood management, low flow augmentation and water supply for planning studies, detailed reservoir regulation plan investigations, and real-time decision support
 - Simulates channel routing



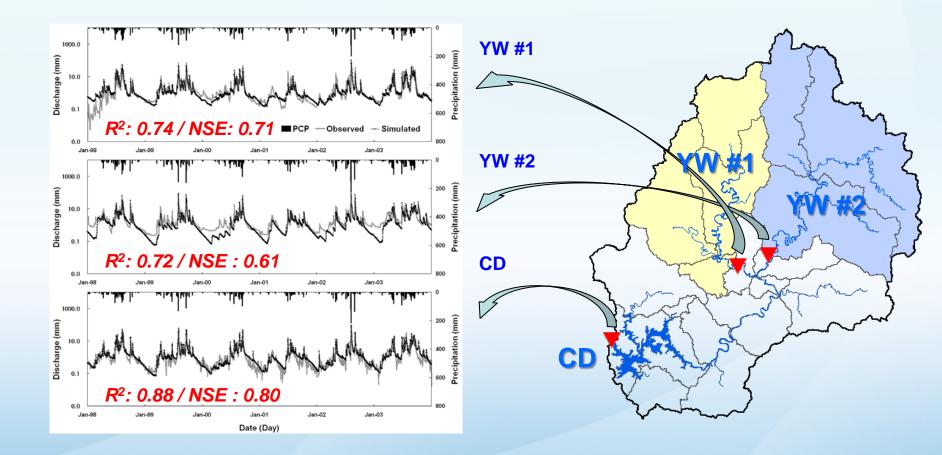
Water resources assessment: performance measurement

- A set of relevant indicators is used to compare the future climate change scenarios with the baseline period
- There are two types of indicators used:
 - a set of quantitative criteria evaluating the total annual water supply and hydropower production and its seasonal distribution
 - a set of qualitative criteria evaluating the performance of the reservoir in terms of reliability, resilience, and vulnerability (RRV) criteria, based on the methodology presented by Hashimoto et al. (1982)

Indicator name	Signification	Measurement method
Reliability (%)	Frequency of failure states	(1 - sum of failure states) / total number of simulated time periods
Resilience (%)	Speed of recovery	Sum of restoration states / sum of failure states
Vulnerability (%)	Extent of system failure	Sum of water deficit / sum of water demand during failure states
		Sum of water released through the turbines / sum of water inflow in to the reservoir over entire simulation period
Production (GWh)	Mean annual production	Sum of produced electricity / number of simulated years
Summer Production (%)	Mean summer production	Sum of electricity produced during summer / total electricity produc tion over the whole simulation period
Winter Production (%) Mean winter production		Sum of electricity produced during winter / total electricity productio n over the whole simulation period
Spill	Spillway activation index	Sum of months with spillway activation / length of simulation period

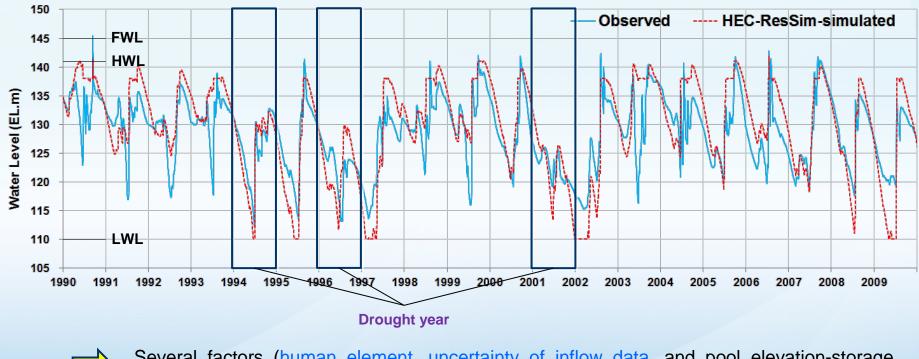


Multi-purpose dam operating rules


- Comprehensive benefits of the Chungju multi-purpose dam include flood control, water supply, power generation, and recreation, etc.
- The future water demand is assumed as same with the baseline period.

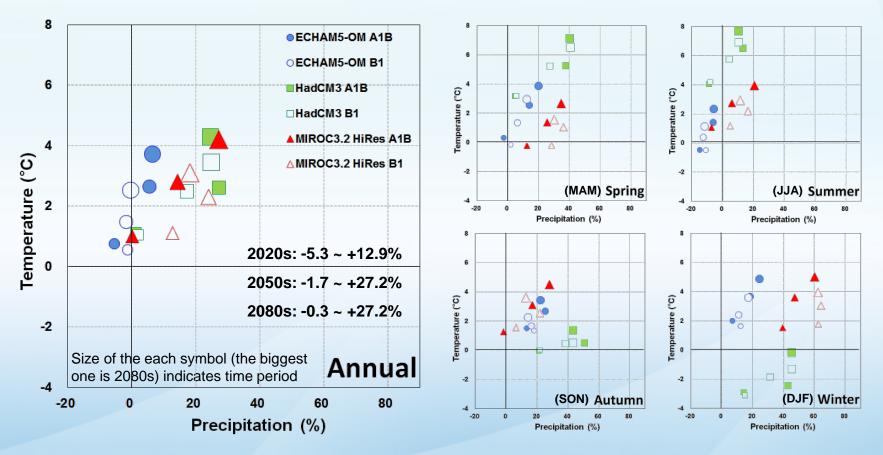
Model calibration (SWAT)

SWAT – streamflow (Park et al., 2011)


- Calibration period : 1998-2000 / Validation period : 2001-2003
- Using daily discharge records at three calibration points

Model calibration (HEC-ResSim)

HEC-ResSim – water level


- Calibration period : 1990-2009
- The daily inflow data include losses of pool seepage and reservoir evaporation
- The model was modified to adjust the references to the specified release, and the model was allowed to make the release determination for each period

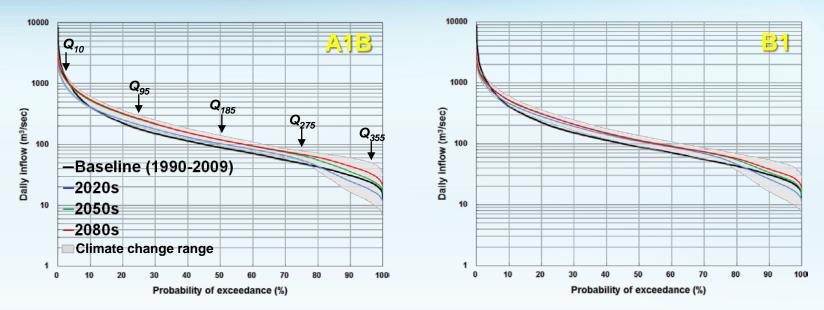
Several factors (human element, uncertainty of inflow data, and pool elevation-storage curve) led to the errors

Climate change projections

- The three GCM data were downscaled using the LARS-WG stochastic weather generator
- The uncertainty of future temperature and precipitation causes evaluation difficulties for prediction of the future watershed hydrology
- Two emission scenarios from the three GCM models adequately reproduced the temperature and precipitation distribution during the whole monsoon season

Watershed hydrology

Climate change impacts on watershed hydrology

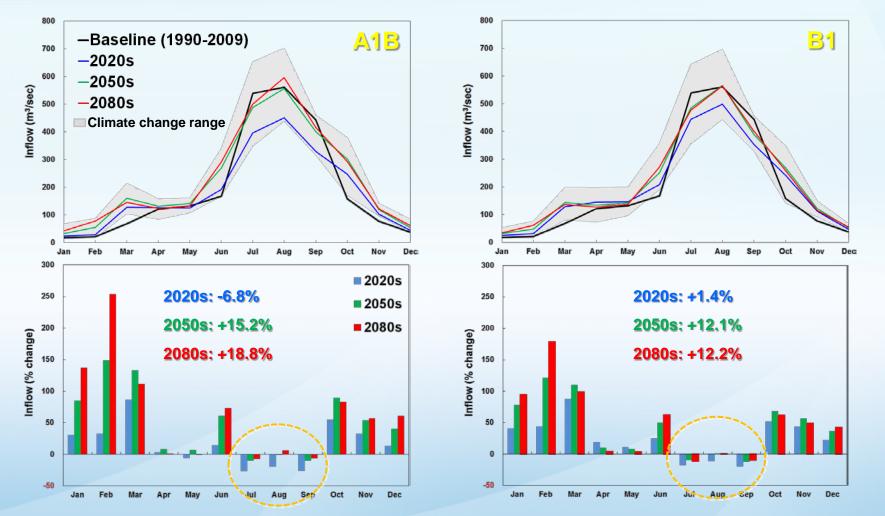

 By applying the future downscaled climate change scenarios, SWAT was run to evaluate the future impacts of climate change on watershed hydrology (specifically evapotranspiration, surface runoff, subsurface later flow, groundwater recharge, and streamflow)

Scenario Ρ SR LAT GW ST ET **Baseline (1990-2009)** 1474 462 593 46 305 941 2020s 1396 (-5.3) 488 (+5.6) 486 (-18.1) 45 (-3.7) 318 (+4.1) 845 (-10.2) ECHAM5-OM 2050s 1556 (+5.6) 528 (+14.2) 577 (-2.7) 48 (+3.9) 336 (+10.1) 958 (+1.7) (A1B) 2080s 1569 (+6.5) 542 (+17.4) 565 (-4.6) 50 (+8.6) 340 (+11.4) 953 (+1.2) 2020s 1458 (-1.1) 489 (+5.8) 538 (-9.3) 45 (-4.3) 326 (+6.8) 905 (-3.9) ECHAM5-OM 2050s 1449 (-1.7) 520 (+12.5) 498 (-16.0) 43 (-7.4) 324 (+6.3) 862 (-8.4) (B1) 2080s 1470 (-0.3) 491 (-17.2) 326 (+7.0) 858 (-8.8) 542 (+17.3) 44 (-4.6) 2020s 1494 (+1.4) 516 (+11.7) 521 (-12.2) 47 (+1.6) 329 (+7.8) 894 (-5.1) HadCM3 2050s 1875 (+27.2) 547 (+18.4) 793 (+33.8) 52 (+12.4) 379 (+24.1) 1220 (+29.6) (A1B) 2080s 1836 (+24.6) 563 (+21.9) 738 (+24.6) 55 (+17.6) 379 (+24.1) 1168 (+24.1) 2020s 1505 (+2.1) 519 (+12.3) 525 (-11.4) 48 (+3.4) 331 (+8.6) 901 (-4.3) HadCM3 2050s 1727 (+17.2) 535 (+15.8) 682 (+15.1) 51 (+9.8) 362 (+18.7) 1092 (+16.0) (B1) 2080s 1839 (+24.8) 548 (+18.5) 759 (+28.0) 54 (+15.6) 377 (+23.6) 1186 (+26.0) 2020s 895 (-4.9) 1478 (+0.3) 509 (+10.2) 509 (-14.1) 46 (-0.2) 343 (+12.4) **MIROC3.2 HiRes** 2050s 1685 (+14.3) 533 (+15.3) 654 (+10.4) 51 (+10.6) 372 (+22.0) 1074 (+14.1) (A1B) 2080s 1874 (+27.2) 556 (+20.4) 793 (+33.7) 55 (+17.4) 393 (+28.9) 1236 (+31.3) 2020s 1664 (+12.9) 524 (+13.4) 656 (+10.7) 46 (-0.3) 358 (+17.3) 1057 (+12.3) **MIROC3.2 HiRes** 2050s 1211 (+28.6) 1828 (+24.0) 533 (+15.3) 785 (+32.5) 50 (+6.7) 380 (+24.5) (B1) 1123 (+19.4) 2080s 1742 (+18.2) 534 (+15.7) 697 (+17.7) 51 (+9.2) 379 (+24.3)

(values in parentheses are percent change in hydrologic components based on the baseline)

Hydrological regimes

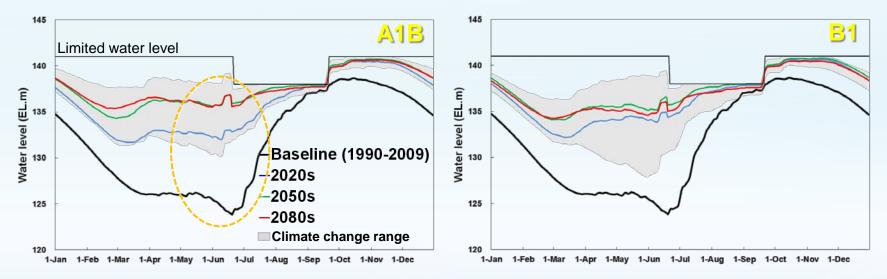
Future flow duration



	Baseline		A1B		B1				
	Daseime	2020s	2050s	2080s	2020s	2050s	2080s		
Mean (m ³ /s)	203.0	184.0	227.2	234.5	200.0	221.2	221.3		
SD	412.7	242.6	305.0	312.1	263.2	295.6	290.1		
Flow Index (m ³ /s)									
Q ₁₀	1171.0	872.7	1090.0	1123.0	965.6	1073.1	1055.1		
Q ₉₅	173.4	204.4	249.0	255.2	221.4	242.5	243.0		
Q ₁₈₅	87.5	101.4	117.0	117.3	107.9	112.6	111.3		
Q ₂₇₅	48.5	54.7	65.0	68.3	57.7	63.8	65.0		
Q ₃₅₅	22.3	16.5	24.4	31.0	17.3	65.0	28.0		
Coefficient (Q ₁₀ /Q ₃₅₅)	52.5	52.9	44.7	36.2	55.8	16.5	37.7		

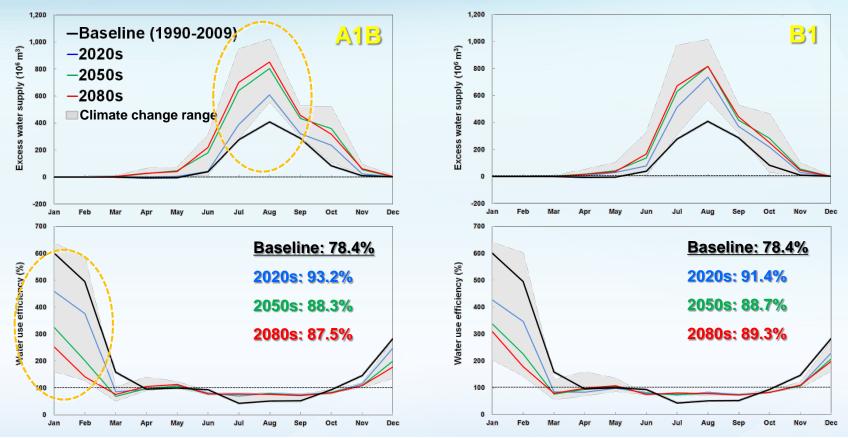
Hydrological regimes

The future dam inflow scenarios


The timing and magnitude of dam inflow (streamflow at the watershed outlet), forest-dominated dam watershed such as Chungju dam watershed is strongly influenced by climate change

Water resources

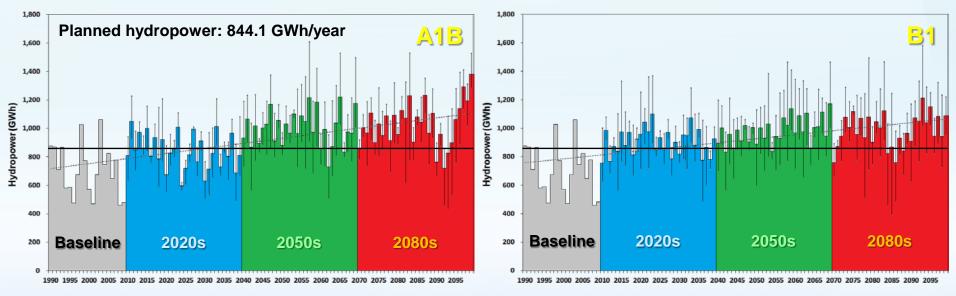
The assessment of water resources


- Daily inflow (1990-2099) from the SWAT simulations was used as input to reservoir simulation model (HEC-ResSim) that simulate the operations of Chungju reservoir systems
- HEC-ResSim was run to evaluate the future impacts of climate change on the water resources system (specifically water system indicators, water supply capacity, and hydropower plant)

	Baseline	A1B			B1		
	Daseiine	2020s	2050s	2080s	2020s	2050s	2080s
Average annual inflow (10 ⁶ m ³)	6,226	5,806 (-6.8)	7,170 (+15.2)	7,399 (+18.8)	6,312 (+1.4)	6,981 (+12.1)	6,984 (+12.2)
Total average annual release (10 ⁶ m ³)	6,238	5,790 (-7.2)	7,168 (+14.9)	7,396 (+18.6)	6,294 (+0.9)	6,980 (+11.9)	6,983 (+11.9)
Average annual release to water supply	4,884	5,413	6,333	6,474	5,772	6,192	6,234
Average annual spills	1,354	377	835	922	522	788	549

Reservoir operation

Performance measurement for the future water supply



Performance	Baseline		A1B		B1			
indicator		2020s	2050s	2080s	2020s	2050s	2080s	
Reliability (%)	92.9	97.7	98.9	98.4	98.2	98.9	98.1	
Resilience (%)	52.9	91.7	100.0	84.8	92.6	100.0	84.6	
Vulnerability (%)	13.8	0.2	0.2	5.6	0.2	0.2	6.2	

Hydropower productions

Climate change impact on hydropower production

- ✓ In South Korea, most energy use usually takes place in the summer and winter
- Record-breaking winter and summer temperatures have spurred increased use of heating and cooling equipment. Heating is mostly fuelled by oil and gas, whereas cooling is mostly used by electricity

Performance indicator	Baseline		A1B		B1			
		2020s	2050s	2080s	2020s	2050s	2080s	
Average annual temperature (°C)	10.3	11.3	13.0	14.4	11.2	12.4	13.3	
Average annual production (GWh)	702	840 (+18.8)	1,002 (+41.7)	1,029 (+45.5)	906 (+28.0)	980 (+38.5)	986 (+39.4)	
Summer Production (%)	40.5	42.8	45.1	46.2	45.0	45.6	46.4	
Winter Production (%)	16.7	14.8	13.2	13.1	14.0	13.5	13.2	

Derformen en indiaeter	Deceline		A1B		B1			
Performance indicator	Baseline	2020s	2050s	2080s	2020s	2050s	2080s	
Average annual temperature (°C)	10.3	11.3	13.0	14.4	11.2	12.4	13.3	
Average annual precipitation (mm)	1,474	1,456 (-1.2)	1,705 (+15.7)	1,760 (+19.4)	1,542 (+4.6)	1,668 (+13.2)	1,684 (+14.2)	
Average annual inflow (10 ⁶ m ³)	6,226	5,806 (-6.8)	7,170 (+15.2)	7,399 (+18.8)	6,312 (+1.4)	6,981 (+12.1)	6,984 (+12.2)	
Average inflow during wet season	4,535	3,619	4,531	4,767	3,984	4,479	4,537	
Average inflow during dry season	1,691	2,187	2,639	2,632	2,328	2,502	2,447	
Total average annual release (10 ⁶ m ³)	6,238	5,790 (-7.2)	7,168 (+14.9)	7,396 (+18.6)	6,294 (+0.9)	6,980 (+11.9)	6,983 (+11.9)	
Average annual release to water supply	4,884	5,413	6,333	6,474	5,772	6,192	6,234	
Average annual spills	1,354	377	835	922	522	788	549	
Efficiency (%)	78.4	93.2	88.3	87.5	91.4	88.7	89.3	
Spill	0.18	0.21	0.31	0.33	0.25	0.29	0.30	
Reliability (%)	92.9	97.7	98.9	98.4	98.2	98.9	98.1	
Resilience (%)	52.9	91.7	100.0	84.8	92.6	100.0	84.6	
Vulnerability (%)	13.8	0.2	0.2	5.6	0.2	0.2	6.2	
Average annual production (GWh)	702	840 (+18.8)	1,002 (+41.7)	1,029 (+45.5)	906 (+28.0)	980 (+38.5)	986 (+39.4)	
Average annual surplus production	95.5	99.1	174.1	213.9	97.2	146.0	161.5	
Average annual deficit production	214.3	88.5	61.9	73.9	52.4	10.3	49.1	
Summer Production (%)	40.5	42.8	45.1	46.2	45.0	45.6	46.4	
Winter Production (%)	16.7	14.8	13.2	13.1	14.0	13.5	13.2	

Concluding remarks

Climate change will affect the regional water supply and water security (e.g., flood and drought) in the study area

- Hydrology output from the SWAT by downscaled climate change scenarios suggests a significant increase in the amount of dam inflow due to precipitation increase
- To mitigate negative hydrologic impacts and utilize positive impacts, climate change should be considered in water resource planning for the multi-purpose dam watersheds
- The dam inflow change gave us the clue for the future adjustment of dam operation rule for both efficient water use and flood control
 - Assuming current operation rule, these changes in system performance may result in increases in economic value of water supply and hydropower production
 - We need to evaluate the monthly water supply for profit maximization based evaluation of optimal reliability of dam operation system
 - ✓ The prediction of water demand is essential to assess future water resource system

To enable adaptation due to climate change as a widely accepted future occurrence, watershed decision makers require quantitative results for the establishment of adaptation strategies

Thank you