Quantification of Urbanization Effect on Water Quality Using SWAT Model in Midwest US

> Presented by: Shashank Singh, M.S. Purdue University

19th July 2012

International SWAT 2012 conference

•OUTLINE

- Background
- Problems and Opportunities
- Research Goal
- Watershed details
- SWAT Model Set up
- Project Results
- Key Personnel

Background

Background

Over the past 25 years, the population of the United States has grown over 30% which has lead to substantial increase in urbanized areas and results in a degradation and loss of forested and agricultural lands (USDC Census Bureau, 2005).

PROBLEMS AND OPPORTUNITIES

One major concern:

- Food vs. fuel

 Increased biofuel demand presents unprecedented economic opportunities to farmers

 There is a need to evaluate and develop land management practices that will sustain both increased corn production and environmental benefits.

Should we be concerned about growing fuel?

			Kilometers
0	25	50	100

Upper White River Basin

HUC number: 05120201

The overall goal of the study :

 To develop a model to study land use and land cover change due to anthropogenic activities in Mid-West US

Research Tasks

- Quantify runoff, sediment, nutrient, losses from agricultural watersheds in Indiana.
- Use computer-based hydrologic/water quality models.
- Examples of computer-based models developed for agricultural systems:

(1) Groundwater Loading Effects of Agricultural Management Systems (GLEAMS),

- a field-scale, edge-of-field and bottom-of-root-zone model.

- (2) National Agricultural Pesticide Risk Analysis (NAPRA) -uses GLEAMS as a core engine
- (3) Long-Term Hydrologic Impact Assessment (L-THIA) - land use change impacts

(4) Soil and Water Assessment Tool (SWAT),

a river basin-scale model.

SWAT model setup

Digital elevation map (DEM)

(30 m grid size) was obtained from USGS

Land use land cover

was (30 m grid) was obtained from the National Land Cover Data – (NLCD 2001).

Soil data

The soil information was obtained in a feature format from the STATSGO

SWAT model setup

Climate data

112h & roligniat & colartat values a vapie of forftom VE91856-12006 at IAgitication a capace Byo (Vag); and Echegineering department (ABE), Purdue University (Sinha et al., 2008).

Water quality data

Water quality data for the study was obtained from Indiana department of Environment and Management (IDEM) for all fixed and temporary stations monitoring water quality

Management information used to setup SWAT model

Corn-Soybean rotation			Continuous Corn			
	Management type	<u>Date</u>	Rate of application	Management type	<u>Date</u>	Rate of application
	Tillage	April 1	-	Tillage	April 1	-
	Tillage	April 6	-	Tillage	April 6	-
	Planting (Corn)	April 13	-	Planting (Corn)	April 13	-
	Fertilizer (An. NH ₃)	May 25	145 kg/ha	Fertilizer (An. NH ₃)	May 25	145 kg/ha
	Harvest and Kill	Oct. 30	-	Harvest and Kill	Oct. 30	-
	Tillage*	Apr. 28	-	Tillage*	April 1	-
	Fertilizer (P)* Planting (Soybean)*	May 2 May 20	32 kg/ha -	Tillage [*] Planting (Corn) [*]	April 6 April 13	-
	Harvest and Kill*	Oct. 1	-	Pesticide (Atrazine)*	April 16	1.5 kg/ha
	Tillage*	Oct. 20	-	Fertilizer (An. NH ₃)*	May 25	145 kg/ha
				Harvest and Kill*	Oct. 30	

CALCULATION OF FERTILIZER APPLICATION RATE

Tri-state N recommendation (lb/ac) = $-27 + [1.36 \times yield potential (bushels per acre)] - N credit$

Nitrogen credits of 30 pounds of N per acre for corn following soybeans and 0 pounds of N per acre for corn after corn are the most recognized and utilized credits.

Average corn yield for UWRB was calculated as 154.1 bushels/acre, therefore, nitrogen requirement from the equation is 153 (lb/acre) or (171 kg/ha).

CALCULATION OF FERTILIZER APPLICATION RATE

Nitrogen application (kg/ha)	Neilson (NEPAC- site)	Neilson (AONR)	Ale (CC)	Ale (CS)	Present study (CS)	Present study (CC)
low	78	> 135	157	179	90	120
medium			179	201	157	187
High	248	< 247	202	224	197	227

Sensitivity Analysis

 $Sr = \frac{\overline{P}}{\overline{O}} \left(\frac{O_2 - O_1}{P_2 - P_1} \right)$

Parameter	Sr	Ranking
Curve Number (CN-II)	1.6	1
Soil evaporation compensation factor (ESCO)	0.4	2
Soil available water content (SOL-AWC)	0.04	3
Groundwater "revap" coefficient (GW_REVAP)	0.03	4
Groundwater delay (GWDELAY)	0.01	5
Ground water threshold depth required in shallow aquifer for return flow (GWQMN)	0.007	б
Base flow factor (Alpha_bf)	0.0003	7

The calibration period for the SWAT model was taken 1988-2000 with initial three years 1988-1990 as warm up years for monthly stream flow calibration.

The SWAT model was validated for the 2001-2006 for monthly stream flow.

Calibrated model parameters for SWAT

Symbol	Input file	Calibrated value	Default value
SURLAG	.bsn	2	4
ALPHA_BF	.gw	0.05	0.048
GW_DELAY	.gw	3	-
GW_REVAP	.gw	0.13	0.02
GWQMN	.gw	830	_
USLE_P	.mgt	0.55	_
P_UPDIS	.bsn	70	20
PPERCO	.bsn	16	10
PSP	.bsn	0.6	0.4

r

	Calibration		Valid	ation
	NSE	R	NSE	R
3354000	0.72	0.86	0.86	0.95
3353200	0.63	0.88	0.82	0.91
3352500	0.74	0.88	0.86	0.94
3351500	0.72	0.87	0.88	0.94
3351000	0.70	0.89	0.72	0.93
3347000	0.74	0.87	0.80	0.94

r

Crop rotation	Total nitrogen	Baseline	P-Value	Criteria
	(kg/ha)	(kg/ha)		
CSlow	8.71	10.99	0.05	Do not reject
CSmed	10.54	10.99	0.33	Do not reject
CShigh	11.83	10.99	0.05	Do not reject
CClow	6.58	10.99	0.00	Reject
CCmed	10.01	10.99	0.58	Do not reject
CChigh	13.40	10.99	0.09	Do not reject
CCSlow	7.69	10.99	0.05	Reject
CCSmed	10.35	10.99	0.48	Do not reject
CCShigh	12.30	10.99	0.03	Reject

*

IDEM station ID	USGS station	Location description IDEM station	Nitrate
2434	03351000	86 th St, Nora. Aka	1991-2006
2410	03351500	SR 238 near Fortville	1991-2006

Figure : Average mean monthly nitrate (kg/ha/day) at IDEM station# 2410

Figure : Average mean monthly nitrate (kg/ha/day) at IDEM station# 2434

1

Monthly stream flow (mm) from watershed with changing curve number (CN)

Monthly sediment yield (mm) from watershed with changing curve number (CN))

Monthly stream flow (mm) from watershed with forest land classified as low density urban area

Monthly sediment yield (mm) from watershed with forest land classified as low density urban area

Monthly evapotranspiration (mm) from watershed with forest land classified as low density urban area

Key Personnel

- Indrajeet Chaubey, Ph.D., Associate Professor
- Bernie Engel, Ph.D., P.E., Professor
- Chetan Maringanti, Ph.D., Agricultural and Biological Engineering

Purdue University

Thanks for giving your valuable time.

shashanksinghb4u@gmail.com