EVALUATION OF ArcSWAT MODEL FOR STREAMFLOW SIMULATION

2012 International SWAT Conference

By

Arbind K. Verma¹ and Madan K.Jha²

- 1. Assistant Professor, SASRD, Nagaland University, Ngaland (India)
- 2. Professor, AGFE Department, IIT Kharagpur (India)

Introduction

Introduction (Contd.)

Present and future per capita water availability in India

Introduction (Contd.)

Introduction (Contd.)

Watershed Hydrologic Models

SWAT	GWLF	WAM
HSPF	WEPP	ANSWER
MIKE SHE	AGNPS	HEC-HMS

Objectives

Calibration and validation of ArcSWAT watershed model for the simulation of streamflow.

Performance evaluation of the model for simulation of streamflow.

METHODOLOGY

- Pre Processing of Hydro-meteorological Data, Preparation of model specific
 weather input files data of 8 years- 1998-2005)
- Preparation of Spatial Data for the Study Area:

DEM, Land use/land cover map and Soil map

Land use/Land cover map

Soil map

Contour Map

DEM

Sub watersheds and Stream reaches

METHODOLOGY (contd.)

Calibration and validation of ArcSWAT model for the simulation of <u>stream flow</u>

- > ArcSWAT model set up
- Sensitivity analysis for 18 streamflow parameters (LH-OAT Sampling techniques),
- > Calibration (SCEA-UA method) and Validation
- Performance evaluation of model for simulation of streamflow at daily and monthly time steps using statistical and graphical indicators

Model Performance Statistics Moriasi et al. (2007)

Statistical Indicators	Mathematical Expression	
RSR	RMSE STDEV obs	
PBIAS	$\begin{bmatrix} \sum_{i=1}^{n} \left(Q_o - Q_s \right)_i (100) \\ \vdots = 1 \end{bmatrix}$	-
NSE	NSE = $1 - \frac{\sum_{i=1}^{n} (Q_o - Q_s)_i}{\sum_{i=1}^{n} (Q_o - \bar{Q_o})_i}$	13

Performance Ratings of a Model for Monthly Time Step

Performance	DSD	NSF	PBIAS (%)		
Rating	N D N		Streamflow	Sediment	
Very good	0.00 < RSR < 0.50	0.75 < NSE < 1.00	$PBIAS < \pm 10$	$PBIAS < \pm 15$	
Good	0.50 < RSR < 0.60	0.65 < NSE < 0.75	$\pm 10 < PBIAS < \pm 15$	$\pm 15 < PBIAS < \pm 30$	
Satisfactory	0.60 < RSR < 0.70	0.50 < NSE < 0.65	$\pm 15 < PBIAS < \pm 25$	$\pm 30 < PBIAS < \pm 55$	
Unsatisfactory	RSR > 0.70	NSE < 0.50	$PBIAS > \pm 25$	$\overline{PBIAS} > \pm 55$	

Moriasi et al. (2007)

RESULTS

Streamflow Simulation

Sensitivity Analysis Results for ArcSWAT Streamflow Parameters

Sl.No.	Parameters	Unit	Mean Sensitivity Index	Assigned Rank
1	Baseflow alpha factor (Alpha_Bf)	days	1.4722	1
2	Manning coefficient for channel (CH_N)		1.3714	2
3	Surface runoff lag coefficient (Surlag)		0.2512	3
4	SCS curve number for moisture condition II (Cn2)		0.2141	4
5	Effective hydraulic conductivity in main channel (Ch_K2)	mm/hr	0.1877	5
6	Threshold depth of water in the shallow aquifer required for return flow to occur (Gwqmn)	mm	0.0921	6
7	Soil evaporation compensation factor (Esco)		0.0346	7
8	Groundwater delay (Gw_Delay) (days)		0.0249	8

Sensitivity Analysis Results (contd.)

Sl.No	Parameters	Unit	Mean Sensitivity Index	Assigned Rank
9	Soil conductivity (Sol_K)	mm/h	0.0150	9
10	Available water capacity of the soil layer (Sol_Awc)	mm/m m	0.0110	10
11	Soil depth (Sol_Z)		0.0077	11
12	Groundwater 'revap' coefficient (Gw_Revap)		0.0070	12
13	Plant evaporation compensation factor (Epco)		0.0066	13
14	Threshold depth of water in the shallow aquifer for 'revap' to occur (Revapmin)	(mm)	0.0061	14
15	Maximum canopy index (Canmx)		0.0041	15
16	Soil albedo (Sol_Alb)		0.0000	17
17	Leaf area index for crop (Blai)		0.0000	17 ₁₇

Initial and Calibrated Parameter Values for Streamflow Simulation

Parameter	Lower boundary	Upper boundary	Initial Value	Calibrated Parameter value
Alpha_Bf	0	1	0.048	0.99947
Canmx	0	100	0	91.80400
Ch_K2	0.01	500	0.01	76.476000
Ch_N	0.01	0.3	0.014	0.01003
Cn2*	-25	25	Soil /LULC data	-17.18700
Ерсо	0	1	0	0.97161
Esco	0	1	0.95	0.02797
Gw_Delay	0	500	31	28.69900
Gw_Revap	0.02	0.2	0.02	0.03377
Gwqmn	0	5000	0	65.50400
Rchrg_Dp	0	1	0.05	0.00034
Revapmin	0	500	1	1.80870
Sol_Awc*	-25	25	Soil data	20.47100
Sol_K*	-25	25	Soil data	24.94900
Sol_Z*	-25	25	Soil data	23.26100
Surlag	1	24	4	17.92800

ArcSWAT Model Performance Statistics for Simulation of Daily Streamflow

	Daily Streamflow			
Statistical Indicators	Calibration Period (1999-2003)		Validation Period (2004-2005)	
	Observed	Simulated	Observed	Simulated
Mean(m ³ /s)	33.41	32.82	34.34	34.90
STDEV(m ³ /s)	53.61	50.84	65.56	66.09
ME (m ³ /s)	0.59		-0.66	
MAE (m^3/s)	9.72		10.84	
RMSE (m ³ /s)	20.10		25.93	
PBIAS	1.14		-1.94	
RSR	0.37		0.39	
NSE	0.86		0.84	
R ²	0.86		0.85	

ArcSWAT Model Performance Statistics for Simulation of Monthly Streamflow

	Monthly Streamflow			
Statistical Indicators	Calibration Period (1999-2003)		Validation Period (2004-2005)	
	Observed	Simulated	Observed	Simulated
Mean(mm)	49.07	48.52	50.04	51.01
STDEV(mm)	64.15	60.12	61.95	63.55
ME (mm)	0.56		-0.97	
MAE (mm)	8.09		9.88	
RMSE (mm)	13.52		15.07	
PBIAS	(1.14)		1.94	
RSR	0.21		0.	24
NSE	0.95		0.93	
R ²	0.96		0.	94

Observed and SWAT Simulated Daily and Cumulative Streamflow Hydrographs

Comparison of Observed and SWAT Simulated Daily Streamflows Hydrographs for Calibration Years 1999-2003

Comparison of Observed and SWAT Simulated Daily Streamflows Hydrographs for Validation Years 2004-2005

23

Observed and SWAT Simulated Monthly Streamflow Hydrographs

Scatter Plots of Observed and Simulated Streamflow

25

Bar Plots of Observed and Simulated Annual Streamflow

Year

Conclusion

Based on the analysis of the results obtained in this study, the following conclusions could be drawn

- Alpha_Bf was found to be the most sensitive parameters followed by Ch_N, Surlag, Cn2, Ch_K2, Gwqmn, Esco, Gw_delay, Sol_k, Slope, Sol_Awc, Sol_Z, Gw_revap, Epco, Revapmin, Canmax, Slsubbsn, and Biomix.
- Values of PBIAS, NSE, and R² during model calibration and validation at daily and monthly time steps were found to vary from -1.94 to 1.76, 0.84 to 0.95, and 0.86 to 0.96 respectively.

Conclusion (contd.)

- Lower values of PBIAS and RSR coupled with higher values of NSE and R² indicated that the SWAT model simulated streamflow within accepatable level of accuracy.
- Diffrerent graphical techniques used to evaluate model performance showed that there is a reasonably good agreement between observed and simulated daily and monthly streamflows as well as observed and simualted annual streamflow volumes for both calibration and validation period of model simulation.
- Overall, it can be concluded that the ArcSWAT model simulated streamflow satisfactorily. Therefore, ArcSWAT model can be used for future studies on wtershed modeling in the Upper Baitarni river basin.

THANK YOU