# **Assessment of Climate Change Impacts** on Environmental Flow Release from a Multi-purpose Dam of South Korea Using SWAT Model

#### Thursday, July 19, 2012

#### HA, Rim

**Doctoral student** 

Jeong, Hyeon Gyo / KIM, Seong Joon **Meteorological Research Scientist / Professor** 

Soil & Water

Dept. of Civil & Environmental System Eng. Konkuk University South Korea



Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea

### Contents

#### **Introduction**

Background of This Study Flowchart of Study

SWAT Model Description

Multi-purpose Dam Watershed Description

Preparation input data

Dam Operation Using SWAT Model

Assessment of Future Multipurpose Dam Operation by RCP scenarios



# **1. Background of This Study**

At present, we have 20 multipurpose dams in South Korea. They have been successfully managed by K-water to fulfill water demands, flood control and hydropower generation.

 Recently, our people require river
 maintenance flow for water quality and healthy eco-environment and the flow

has been secured by government law.

We can infer that the climate change certainly affects the dam inflow dynamics from the watershed. By the temporal variations of dam storage, we need the adjustment of operation rule for seasonal target release in a monthly base.



# **1. Background of This Study**

- □ Using SWAT dam operation, we try to evaluate the availability of maintenance flow under the future climate change scenarios.
  - Assuming the future water demands of living, industry, and agriculture are not changed and applying the present monthly target release, we will discuss the future maintenance flow to the downstream by looking at the future temporal variations of dam storage.
  - For a 8,245.6 km<sup>2</sup> watershed including two dams (one is main dam and the other is regulation dam at the downstream), the SWAT was setup using 9 years (2002-2010) dam inflow and storage data, and assessed the storage and flow by applying RCP 4.5 and 8.5 scenarios (2040s, 2080s) of HadGEM3-RA model.

### 2. Flowchart of Study



## **3. Focus of SWAT Run in this study**

### Water balance equation

$$SW_t = SW_0 + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_a - W_{seep} - C_a)$$

- SW<sub>t</sub> = Final soil water content (mm)
- $SW_0$  = Initial soil water content on day i (mm)
- $R_{dav}$  = Amount of precipitation on day i (mm)
- $Q_{surf} = Amount$  of surface runoff on day i (mm)
- $E_a = Amount$  of evapotranspiration on day i (mm)
- $W_{\text{seep}}$  = Amount of water entering the vadose zone from the soil profile on day i (mm)
- $Q_{qw} = Amount of return flow on day i (mm)$



#### The water balance for a reservoir

 $V = V_{stored} + V_{flowin} - V_{flowout} - V_{pcp} - V_{evap} - V_{seep}$ 



## 3. Focus of SWAT Run in this study

# V<sub>flowout</sub>

#### **Measured** Daily, Monthly (IRESCO = 3,1)

$$V_{flowout}$$
 = 86400 ·  $q_{out}$  [outflow rate, m<sup>3</sup>/s ] (m<sup>3</sup>H<sub>2</sub>O)



 $V_{targ}$ : target reservoir volume (m<sup>3</sup> H<sub>2</sub>O)

ND<sub>targ</sub>: number of days required for the reservoir to reach target storage

 $V_{em}$ : volume of water held in the reservoir when filled to the emergency spillway (m<sup>3</sup> H<sub>2</sub>O)

 $V_{pr}$ : volume of water held in the reservoir when filled to the principal spillway (m<sup>3</sup> H<sub>2</sub>O)

Daegwallyeong

### 4. Multi-purpose Dam Watershed Description

### Chungju Dam & Chungju Regulation Dam Watershed

- The watershed includes two Dams
- The study area: 8,245.6 km<sup>2</sup>
  - ✓ Forest area ratio: 78.5 % (6,473 km<sup>2</sup>)
  - ✓ South Korea : 99,373 km<sup>2</sup>
- The annual average precipitation: 1,450.9 mm
- The annual mean temperature: 10.3 °C





Wonju

p. 08/20

## 5. Preparation input data

### □ Map data (Land use, soil and elevation data)

#### Spatial resolution : 100 m

- Landuse : Land cover was classified with 9 categories. Forest (78.5%), Upland Crop (11.1%), Paddy (3.6%)
- Soil Texture : Most soil cover is Sandy Loam (32.3%), Loam (31.8%), and Silty Loam (21.5%) respectively.
- ✤ Average Elevation : 542.8 EL.m



### 5. Preparation input data - Measured Data

#### Chungju Dam & Chungju Regulation Dam Inflow / Outflow



### 6. Model Calibration & Verification - Consider the Dam Operation



### 6. Model Calibration & Verification - Consider the Dam Operation

□ Calibration period : 2002–2006 / Verification period : 2007–2010



### 6. Model Calibration & Verification - Consider the Dam Operation

### **Calibration & Verification of Dam Volume**



### 7. Application of RCP scenarios



# 7. Application of RCP scenarios

#### Baseline : 2002~2010 / 2040s : 2031~2050 / 2080s : 2071~2090

#### Precipitation (mm)



#### Temperature (°C)



Dec.

2040s

2080s

Nov.

Baseline

# 7. Application of RCP scenarios



### 7. Assessment of Future Dam Operation

Baseline : 2002~2010 / 2040s : 2031~2050 / 2080s : 2071~2090

Climate Change Impact on Dam inflow and Storage (CJ)



### 7. Assessment of Future Dam Operation

#### Future Dam Storage of Flood year and Drought year (CJ)



# Summary & Concluding remarks

The availability of downstream maintenance flow from multipurpose dam was evaluated under the RCP climate change scenarios using SWAT dam operation.

In the future,

- ✓ Dam storage (under the present monthly target release)
  - > Increased in spring and summer  $\rightarrow$  Available
  - ➢ Decreased in <u>autumn and winter</u> → Shortage ↓
- So, we need the adjustment of operation rule for seasonal target release in a monthly base by the temporal variations of dam storage.

# " Thank You "

#### For further information, please contact:

Ha, Rim

Ph.D. Candidate, Dept. of Civil & Environmental System Engineering, Konkuk University rim486@konkuk.ac.kr

We're on the Web!

See us at: http://konkuk.ac.kr/~kimsj/

Earth Information Engineering Laboratory

SESSION D3: Climate Change Applications - II





| S Edit Reservoir Parameters, Subbasin: 1, Resrvoir ID: 1 |                       |                    | - • ×                                     |                                   |                 |
|----------------------------------------------------------|-----------------------|--------------------|-------------------------------------------|-----------------------------------|-----------------|
| Reservoir Data   Monthly Data   Lake Water Quality Data  |                       |                    |                                           |                                   |                 |
| Reservoir Characteristics                                |                       |                    |                                           |                                   |                 |
| MORES IVRES                                              | RES_ESA (ha)          | RES_EVOL (10^4 m3) | RES_PSA (ha)                              |                                   |                 |
| Simulation Start 💽 1997                                  | 231,07                | 1599,2<br>Volu     | 150<br>me of water peeded to fill the res | envoir to the emergency spillway. | Min 15 May 2    |
| RES_PVOL (10^4 m3) RES_VOL (10^4 m3)                     | RES_SED (mg/L)        | RES_NSED (mg/L)    | RES_D50 (um)                              | ervoir to the entergency spinway. | VIII IS IVIAX S |
| 100                                                      | 1                     | 1                  | 10                                        |                                   |                 |
|                                                          | ,                     | ,                  | ,                                         |                                   |                 |
|                                                          |                       |                    |                                           |                                   |                 |
|                                                          |                       |                    |                                           |                                   |                 |
| -Reservoir Management                                    |                       |                    |                                           |                                   |                 |
| IBESCO                                                   | BES BB (m3/c)         | IELOD 1B           | IELOD2B                                   | R.                                |                 |
| Measured Daily Outflow                                   | 1 2 46                | Oct 💌              | Mar 🚽                                     | N                                 |                 |
|                                                          |                       | 1000               |                                           |                                   |                 |
| NDTARGR RESDAYO Table                                    |                       | WURTNF             |                                           |                                   |                 |
| □ C:₩SWAT0310₩data₩i                                     | D6reservoir_2011까지인 🛅 | 0                  |                                           |                                   |                 |
|                                                          |                       | -                  |                                           | K                                 |                 |
|                                                          |                       |                    |                                           | - 2                               |                 |
| Edit Values Cancel Edits Save E                          | dits Exit             |                    |                                           |                                   |                 |
|                                                          |                       |                    |                                           |                                   |                 |
|                                                          |                       |                    |                                           |                                   |                 |

### AVSWAT-X, V4.11 (with ArcView 3.2)

| Watershed                    | IYRES                                                                                                                             | RES_ESA                                                                                                                                                                              | RES_EVOL                                                                                                                                                                                                                                                     | RES_PSA                          | RES_PVOL                                                                                                                             | RES_VOL                                                                                                                                                                                                                                                                                                               | RES_K                                                                                                                                                                                                                       |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | (rear)                                                                                                                            | (na)                                                                                                                                                                                 | (10 m²)                                                                                                                                                                                                                                                      | (na)                             | $(10 \text{ m}^2)$                                                                                                                   | (10 118)                                                                                                                                                                                                                                                                                                              | (11111/111)                                                                                                                                                                                                                 |
| CJ Dam                       | 2002                                                                                                                              | 9634                                                                                                                                                                                 | 261951                                                                                                                                                                                                                                                       | 8775                             | 225152                                                                                                                               | 74211.5                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                         |
| CJR Dam                      | 2002                                                                                                                              | 1194                                                                                                                                                                                 | 5585                                                                                                                                                                                                                                                         | 851                              | 3373                                                                                                                                 | 2749.5                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                         |
| Edit Reservoirs Inputs       | Reservoir data: Subb                                                                                                              | asin 15                                                                                                                                                                              |                                                                                                                                                                                                                                                              | Edit Reservoirs Inputs           | 🛛 🍳 Reservoir data: Subbasin                                                                                                         | 9                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |
| Select Subbasin:             | Reservoir data:<br>MORES Janu<br>IYRES<br>RES_ESA<br>RES_EVOL<br>RES_PSA<br>RES_PVOL<br>RES_SED<br>RES_SED<br>RES_NSED<br>RES_D50 | lay ▼ [M<br>2002<br>9634 [ha]<br>261951 [10 <sup>-1</sup> 4 m3]<br>8775 [ha]<br>225152 [10 <sup>-1</sup> 4 m3]<br>74211.5 [10 <sup>-1</sup> 4 m3]<br>1.0 [mg/l] RE<br>1.0 [mg/l] [€] | IRESCO<br>leasured daily outflow   RES_RR  0.1  IFLOD1R January  IFLOD2R January  NDTARGR  1  SDAYO table  Narswatx\av0\15.dbf                                                                                                                               | 9<br>15<br>                      | Reservoir data:<br>MORES January<br>IYRES<br>RES_ESA<br>RES_EVOL<br>RES_PVOL<br>RES_VOL<br>RES_VOL<br>RES_SED<br>RES_NSED<br>BES_D50 | IF         Mea           2002         1194           [ha]         F           5585         [10 <sup>+</sup> 4 m3]           [ha]         II           3373         [10 <sup>+</sup> 4 m3]           2749.45         [10 <sup>+</sup> 4 m3]           1.0         [mg/1]           BESD         [10 <sup>+</sup> 4 m3] | AESCO<br>sured daily outflow   AES_RR  0.1 [m3/s]  FLOD1R  January  FLOD2R  January  IDTARGR  1  (days)  AYO table  vswatx\av0\9.dbf                                                                                        |
| BANHO<br>BONR YANG<br>BURGOG | RES_K                                                                                                                             | 0.0 [mm/hr]                                                                                                                                                                          | WORTNF   0.000                                                                                                                                                                                                                                               | BANGGOG<br>BANHO<br>BONR YANG    | RES_K                                                                                                                                | 0.0 [mm/hr]                                                                                                                                                                                                                                                                                                           | //URTNF   0.000 [m3/m3]                                                                                                                                                                                                     |
| обла до 2012 SWA             | Monthly data<br>OFLOWMX C<br>STARG C<br>WURESN C                                                                                  | Jan. Feb.<br>169.2 134.1<br>May Jun.<br>869.3 2376.<br>Sep. Oct.<br>4174.6 750.1<br>Lake Water Qu                                                                                    | Mar.         Apr.           8         253.9         459.5           Jul.         Aug.           4         9615.4         8366.9           Nov.         Dec.           8         241.3         242.6           uality         Help         Cancel         120 | ВОВОВ<br>СНАНАNG<br>1 2 2012 SWA | Monthly data<br>OFLOWMX C<br>OFLOWMN C<br>STARG C<br>WURESN C                                                                        | Jan. Feb.<br>  161.8   177.1  <br>  May Jun.<br>  1470.7   3805.8  <br>  Sep. Oct<br>  5004.6   938.4  <br>  Lake Water Quali                                                                                                                                                                                         | Mar.         Apr.           304.6         670.6           Jul.         Aug.           12636.5         9772.8           Nov.         Dec.           249.0         242.€           ity         Help         Cancel         OK |