2012 International SWAT Conference, New Delhi, India July 18-20, 2012

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach

Dr.Gowri¹

Dr.Thirumalaivasan²

¹Associate Professor, Jerusalem College of Engineering, Department of Civil Engineering, Chennai, gowrisenthilkumar@gmail.com ²Professor, Institute of Remote Sensing, Department of Civil Engineering, Chennai

INTRODUCTION

- What is Evapotranspiration?
- Evapotranspiration
 - = Evaporation + Transpiration
- Knowledge of ET
 - Is critical for irrigation management
 - Effective utilisation of water
 - Manage the scarce resource

NEED FOR THE STUDY

- Conventional methods estimate ET based on point based measurements, Remote sensing based ET estimation-spatial distribution
- INPUT Thermal Infrared (TIR) data and ground based meteorological data
- Spatial resolution of the thermal data is coarser
- Current ET estimating methods use coarse spatial thermal bands for analysis
- Spatial enhancement of the thermal data with the spatial resolution of visible bands

OBJECTIVES

• To spatially enhance the low spatial resolution TIR image by Multi Resolution Techniques

 To analyze the spatial variation of actual Evapotranspiration estimated from the enhanced TIR image.

ENERGY BALANCE FOR ET

ET is calculated as a "residual" of the energy balance

PRIMARY DATA FOR ENERGY BALANCE MODELS

- Surface temperature is derived information
- Thermal infrared images in the wavelength range 8 to 14 μ m

Sensor	Satellite	Visible/NIR bands	Thermal band	Revisit time
ETM+	Landsat 7	30 m	60 m	16 days
ASTER	Terra	15 m	90 m	On demand
TM	Landsat 5	30 m	120 m	16 days
MODIS	Terra, Aqua	250/500 m	1000 m	1 day
AVHRR	NOAA	1000 m	1000 m	1-2 days

REMOTE SENSING BASED ET

According to Courault et al (2005), classified as follows:

- Direct simplified methods
 - Semi empirical models (ET directly related to surface temperature)
- Residual methods of energy budget
 - Empirical and physical modules
 - Two Source Model
 - Surface Energy Balance Algorithm for Land (SEBAL)
 - Simplified Surface Energy Balance Index (S-SEBI)
 - Evapotranspiration Mapping Algorithm (ETMA)
 - Mapping Evapotranspiration with Internalized Calibration (METRIC)
- Deterministic methods
- Vegetation index based method

CHOICE OF SEBAL METHOD

Developed by Bastiannssen et al 1998

- Minimum amount of ground measurements including meteorological measurements
- Based on physical concept applicable for various climates
- No need for landuse classification
- Validated at various countries
- Procedures are satellite independent can be used with other satellite images having thermal bands
- SEBAL calculates actual ET and no satellite based crop classification is needed
- SEBAL eliminates the need for atmospheric correction of surface temperature

LIMITATION

- Estimating ET at high spatial resolution for field level analysis
- Spatial resolution of the estimated ET_{actual} is limited to the spatial resolution of the TIR image
- Spatial resolution of thermal band is often coarser than visible, near infrared and shortwave-infrared.
- Research need to utilize simultaneously acquired high resolution visible, VNIR and SWIR images to improve on the spatial resolution of the ET maps

DATA FUSION

 Research has developed that aims at proposing algorithms for fusing high spatial and high spectral resolution images, in order to synthesise images with highest spectral and spatial resolutions available in the sets of images (Ranchin et al 2003).

Location of the Study Area

Acquisition data	Over pass time	Sun elevation (degrees)	Sun azimuth (degrees)
4 Dec 1999	10:28:21.89	49.60179	143.26033
19 Oct 2000	10:25:40.71	58.59446	129.34565

METHODOLOGY

- IMAGE SIMILARITY ANALYSIS
- SPATIAL ENHANCEMENT
- IMAGE QUALITY ASSESSMENT
- SEBAL ANALYSIS

SPATIAL ENHANCEMENT

• IMAGE SIMILARITY ANALYSIS

Wavelet Based Enhancement Scheme **Bi-orthogonal Wavelets A**_{TIR} H_{TIR} **Low Spatial** Resampled **Combined Wavelet** Resolution Image V_{TIR} D_{TIR} Coefficients DWT **A**_{TIR} H_{VIS} Input Wavelet Images V_{VIS} Coefficients D_{VIS} A_{VIS} H_{VIS} DWT **High Spatial** Inverse Resolution DWT V_{VIS} \mathbf{D}_{VIS} **Spatially Enhanced** Image

IMAGE QUALITY ASSESSMENT

- VISUAL EVALUATION
- QUANTITATIVE EVALUATION

- SPECTRAL QUALITY

RESULTS

Spectral Quality Assessment

Imaga	TIR _{RES}						
iiiiage	RMSE	CC	ERGAS	Q4			
04-Dec-99	0.916 0.928		1.473	0.959			
19-Oct-00	0.852	.852 0.964 1.372		0.974			
Imaga	TIR						
inage	RMSE	CC	ERGAS	Q4			
04-Dec-99	0.591	0.949	2.644	0.915			
19-Oct-00	0.778	0.989	2.853	0.928			

Spatial Quality Assessment for Enhanced Images (at 30m Spatial Resolution)

Images	Standard Deviation (SD)		Mean Gradient (MG)	Correlation Coefficient (CC)	HighPass Correlation Coefficient (HPCC)	
	TIR _{WAV}		TIR _{WAV}	TIR _{WAV}	TIR _{WAV}	
04-Dec-99	4.919	2.844	4.690	0.894	0.954	
19-Oct-00	5.256	2.870	4.849	0.925	0.981	

Spatial Variation of NDVI Image

Surface Temperature Images from TIR_{res} and TIR _{wav} Image

	Statistics of Estimated Net Radiation								
	Imagaa	Rn with	n TIR _{RES} (W/m2)	Rn with TIR _{WAV} (W/m2)				
	mages	Min	Max	Mean	Min	Max	Mean		
	04-Dec-99	172.37	410.03	330.16	169.37	412.29	331.42		
	19-Oct-00	180.87	454.58	374.55	183.13	460.96	374.40		
_	Sta	atistics	of Estir	nated S	Soil He	at Flux			
	Imagas	G with	n TIR _{RES}	(W/m2)	G with	n TIR _{WAV} (W/m2)		
_	mages	Min	Max	Mean	Min	Max	Mean		
	04-Dec-99	23.18	39.20	31.27	20.04	41.86	31.37		
_	19-Oct-00	20.49	51.82	41.76	20.14	55.83	41.67		
	Statis	tics of	Estima	ted Sei	nsible H	sible Heat Flux			
	Image	H with	TIR _{RES} (W/m2)	H with	n TIR _{WAV} (W/m2)		
	images	Min	Max	Mean	Min	Max	Mean		
-	04-Dec-99	-18.43	294.78	110.63	-22.43	306.64	119.26		
	19-Oct-00	-18.63	297.41	134.28	-11.25	269.05	128.90		
-	Statist	ics of E	Estimat	ed Eva	porative Fraction				
		Evapor	Evaporative fraction			Evaporative fraction			
	Images	with	TIRRES	(-)	wit	h TIRWAV	/ (-)		
_		Min	Max	Mean	Min	Max	Mean		
-	04-Dec-99	0	0.96	0.69	0	0.98	0.78		
7/19/20	¹² 19-Oct-00	0	2010 SØ8T In	ternationa8Cor	nfere n fe	0.97	0.79		

Spatial Distribution of ETact Using TIR_{res} Image and TIR_{wav} Image

Summary of SEBAL Estimates at Different Scale and the Point Estimate of Reference ET

	БŢ		E	Г _{асt}	ET	- act	ET	- act
	LI ₀ Donmon	ET _o (Pan	Station Pixel (mm/day)		Vegetation		(whole scene)	
Images	Montoith	evaporation)			(mm/day)		mm/day	
	(mm/day)	(mm/day)	ETact-	ETact-	ETact-	ETact-	ETact-	ETact-
	(IIIII/uay)		RES	WAV	RES	WAV	RES	WAV
04-Dec-99	4.32	3.19	4.17	4.12	3.56	4.18	3.24	2.41
19-Oct-00	4.65	4.4	4.27	4.24	3.71	4.27	2.89	2.62

Percentage Difference between ET Estimates for Agricultural Land Type

	ETo	E	T _{act}	Percentage		
Images	Penman-	Vegetatio	n (mm/day)	Difference (%)		
iiiages	Monteith (mm/day)	ET _{act-RES}	ET _{act-WAV}	ET _{act-RES}	ET _{act-WAV}	
04-Dec-99	4.32	3.56	4.18	17.59	3.24	
19-Oct-00	4.65	3.71	4.27	20.22	8.17	

CONCLUSION

- Wavelet enhanced images have the advantage of high spatial resolution while retaining spectral content from the original TIR images
- NDVI and surface temperature images have a negative correlation.
- ET and NDVI have a high agreement in terms of spatial distribution based on the positive relation of vegetation index and evapotranspiration.
- Overall accuracy of ET from SEBAL estimated using wavelet enhanced TIR image is within a margin of 10% compared to the Penman-Monteith method.

SCOPE FOR FURTHER STUDIES

- High spatial microwave data can be used to estimate ET
- To enhance the spatial resolution of freely available high temporal satellite images
- Stages of the crop growth can be incorporated in the estimation of actual ET
- need to formulate approaches that utilize lowresolution (greater than 1 km) satellite platforms, to inform upon the field scale

THANKYOU