EVALUATION OF REVISED SUBSURFACE TILE DRAINAGE ALGORITHMS IN SWAT FOR A COLD CLIMATE

D. N. Moriasi, P.H. Gowda, J. G. Arnold, D.J. Mulla, and S. Ale

Study Goals

Modifications made to potential maximum soil moisture retention parameter algorithms to account for the effects of tile drainage on the computation of surface runoff using the CN method in poorly drained agricultural watersheds

Calibration and validation of the SWAT for subsurface tile drain flow for poorly drained soils in a cold climate using long term monitoring data

Tile Drainage Approaches in SWAT

- Method 1: Function of water table depth, tile depth, and the time required to drain the soil to field capacity (Arnold et al., 1999)
- Method 2: Hooghoudt's (1940) steady-state and Kirkham (1957) tile drain equations; function of water table depth, tile drain depth, size, and spacing (Moriasi et al., 2012)
- The water table depth is a function of soil water movement (SW)
- The traditional method, which computes the retention parameter in SWAT as a function of soil profile water content, generally over predicts runoff in poorly drained soils equipped with tile drains

Surface Runoff Approaches in SWAT

SCS curve number procedure (SCS, 1972)

 $\succ Q_{surf} = \frac{(Rday - 0.2S)^2}{(Rday + 0.8S)}$

$$> S = 25.4(\frac{1000}{CN} - 10)$$

- $> Q_{surf}$ is the accumulated runoff or rainfall excess (mm H₂O),
- > F_{inf} is the cumulative infiltration at time t (mm H₂O)
- > S is the retention parameter (mm H_2O)
- > CN is the curve number for the day

F_{inf,t} = R_{day} - Q_{surf}
 Green & Ampt infiltration method (1911)

$$F_{inf,t} = Ke. \left(1 + \frac{\Psi_{wf} \cdot \Delta \Theta_{v}}{F}\right)$$

$$F_{inf} \text{ is the infiltration rate}$$

$$K_{e} \text{ is the effective hydrony}$$

$$\Psi_{wf} \text{ is the wetting from the second or the second se$$

> $\Delta \theta_v$ is the change in volumetric moisture content across the wetting front (mm/mm)

te at time *t* (mm/hr)

raulic conductivity (mm/hr)

matric potential (mm)

> F_{inf} is the cumulative infiltration at time t (mm H₂O)

 $ightarrow Q_{surf} = R_{day} - F_{inf,t}$

Neitsch et al. (2009)

Retention Parameter Methods in SWAT

Function of soil water content (ICN = 0)

 $\succ S = Smax * \left(1 - \frac{SW}{SW + exp(w_1 - w_2.SW)}\right)$

- \succ S_{max} is the maximum value the retention parameter can achieve on any given day (mm)
- SW is the soil water content of the entire profile excluding the amount of water held in the profile at wilting point (mm H₂O)
- \succ w₁ and w₂ are shape coefficients
- > The maximum retention parameter value, S_{max} , is calculated by solving
- $S = 25.4(\frac{1000}{CN} 10)$ using $\overline{CN_1}$

Function of plant evapotranspiration (ICN = 1)

$$\succ S = Sprev + Eo * exp\left(\frac{-cncoef - Sprev}{S_{max}}\right) - Rday - Qsurf$$

- > S_{prev} is the retention parameter for the previous day (mm)
- \succ \vec{E}_o is the potential evapotranspiration for the day (mm d⁻¹),
- cncoef is the weighting coefficient used to calculate the retention coefficient for daily curve number calculations dependent on plant evapotranspiration

Table 2:1-1: Runoff curve numbers for cultivated agricultural lands (from SCS Engineering Division, 1986; Neitsch et al. (2009)

Cover						
			Hydrologic Soil Group			
Land Use	Treatment or practice	Hydrologic condition	A	В	С	D
Fallow	Bare soil		77	86	91	94
	Crop residue cover*	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row	Poor	72	81	88	91
		Good	67	78	85	89
	Straight row w/ residue	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured	Poor	70	79	84	88
		Good	65	75	82	86
	Contoured w/ residue	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured & terraced	Poor	66	74	80	82
		Good	62	71	78	81
	Contoured & terraced w/ residue	Poor	65	73	79	81
		Good	61	70	77	80
Small grains	Straight row	Poor	65	76	84	88
		Good	63	75	83	87
	Straight row w/ residue	Poor	64	75	83	86

* Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

- Soil's permeability
- Land use
- Antecedent soil water conditions
- > Slope (5%)
- Not a function of tile drainage

Neitsch et al. (2009)

Impact of Tile Drainage on Hydrology

> (1) increases storage capacity in the soil

- continuous removal of excess water from the soil profile (Skaggs and Broadhead, 1982).
- tile drainage improves soil structure, more porous and hence more storage capacity (Gardner et al., 1994).

Table 1. The variability of drainable porosity with soil texture and structure (Sands, 2009)

Soil Texture	Field Capacity (% by vol.)	Wilting Point (% by vol.)	Drainable Porosity (% by vol.)
clays, clay loams, silty clays	30-50%	15-24%	3-11%
well structured loams	20-30%	8-17%	10-15%
sandy	10-30%	3-10%	18-35%

Example:

2 soils with Pd = 4%; undrained and drained @ 1000 mm below surface. Wtd depth for undrained is 200 mm below surface while drained is 1000 mm below surface on a given day. Undrained soil has (4*200 mm/100) 8 mm of pore space available btn surface and wtd while the drained soil has (4*1000/100) 40 mm of pore space available btn; 32 mm more available (empty) pore space. If low intensity rainfall of 50 mm occurred, you would expect 42 mm of surface runoff from undrained and 10 mm from drained soil ("sponge effect").

(2) increases infiltration, reduces surface runoff (Thomas et al. 1995)

Use of CN Method on Tile Drained Watersheds

According to Walker et al. (2000) CN method can be used in tile –drained watersheds with possible modifications of:

(1) CN used to estimate potential maximum soil retention (S) In SWAT this is done by calibration

(2) potential maximum retention (S_{max}) associated with initial abstractions (I_a)

Modified Soil H₂O Retention Parameter

Modified function of soil water content method (ICN= 2)

- $\succ S = 8.0 * Smax * \left(1 \frac{SW}{SW + exp(w_1 w_2.SW)}\right)$
 - \succ S_{max} is the maximum value the retention parameter can achieve on any given day (mm)
 - SW is the soil water content of the entire profile excluding the amount of water held in the profile at wilting point (mm H₂O)
 - \succ w₁ and w₂ are shape coefficients
 - > The maximum retention parameter value, S_{max} , is calculated by solving
 - $S = 25.4(\frac{1000}{CN} 10)$ using CN_1

Study Area and Data

- Three continuous corn plots located in the University of Minnesota's Agricultural Experiment Station near Waseca, southern Minnesota
- The size of each plot was 13.5 x 15.0 m. These plots were designed to simulate a tile drain spacing of 27 m. Tile drains were installed at a depth of 1.2 m with a gradient of 0.1%. Diameter of the tile drain was 100 mm.
- Since 1982, these plots were planted with continuous corn under moldboard plow tillage.
- Field measurements of soil and crop properties were made as a part of a tile drainage study
- Tile drain flows were measured daily and summed to calculate monthly and yearly values.
- Weather data recorded at a weather station located 0.5 km from the experimental plots was used in the simulation

Davis et al. (2000)

Tile Drain Parameters

Used Hooghoudt's (1940) steady-state and Kirkham (1957) tile drain equations

Table 1. Values used for subsurface drainage systems in the study plot (Davis et al., 2000).

Parameter	Description	Value
DDRAIN	Depth to subsurface tile (mm)	1200
Size	Diameter of tile drain (mm)	100
SDRAIN	Distance between two drain or tile tubes (mm)	27000

Results: Water Budget

Table 2. Observed/reported and simulated average annual water budget. ICN = 0 is original method based on soil water content; ICN = 2 is soil water content method, modified for tile drainage. * Moorman et al., 1999; ** Nangia et al., 2009

Component	Obs./	Literature	ICN=2	2, CN2 = 78	ICN=0, CN2=78		ICN=0, CN2=30		
	Depth (cm)	Percent of Precip. (%)							
Precipitation	52.8	100	52.8	100	52.8	100	52.8	100	
ET		64 – 70*	35.9	68	35.4	67	35.7	68	
Tile Drainage	20.7	39	20.3	39	9.1	17	19.7	37	
Runoff		5**	0.5	1	13.1	25	0.6	1	

Calibrated CN2 Value Implications

Table 2:1-1/2: Runoff curve numbers for cultivated agricultural lands (from

SCS Engineering Division, 1986; Neitsch et al. (2009)

	Cover					
			Hydr	ologic S	Soil Gre	oup
		Hydrologic condition				
Land Use	Treatment or practice		Α	В	С	D
Fallow	Bare soil		77	86	91	94
	Crop residue cover	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row	Poor	72	81	88	91
		Good	67	78	85	89
	Straight row w/ residue	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured	Poor	70	79	84	88
	Cover					
			Hyd	Irologic	: Soil G	roup
		Hydrologic condition	1			-
Cover Type			Α	В	С	D
Pasture, grassl	and, or range—continuous forage for grazin	g Poor	68	79	86	89
		Fair	49	69	79	84
		Good	39	61	74	80
Meadow—con generally mov	ntinuous grass, protected from grazing an wed for hay	d	30	58	71	78
Brush—brush-weed-grass mixture with brush the major element		Poor	48	67	77	83
		Fair	35	56	70	77
		Good	30	48	65	73
Woods—grass combination (orchard or tree farm)		Poor	57	73	82	86
		Fair	43	65	76	82
		Good	32	58	72	79
Woods		Poor	45	66	77	83
		Fair	36	60	73	79
		Good	30	55	70	77

Results: Tileflow Simulation Performance

ICN	Calik	oration	Validation		
	Monthly NSE	PBIAS (%)	Monthly NSE	PBIAS (%)	
ICN=2, CN2=78	.77	-1.1	.78	5.4	
ICN=0, CN2=78	.39	55.3	.26	57.2	
ICN=0, CN2=30	.81	-1.7	.72	12.9	

Results: Tileflow Simulation Performance

Calibration

SWAT Confer

Thank You!

Questions?