

Latest advances of the BASHYT framework: a web, GIS oriented, interface for SWAT

P. Cau, S. Manca, C. Soru, D. Muroni

Center for Advanced Studies, Research and Development in Sardinia pierluigi.cau@gmail.com

CRS4 (http://www.crs4.it) Parco Tecnologico POLARIS, 09010 Pula CA, Italy

Presentation outline

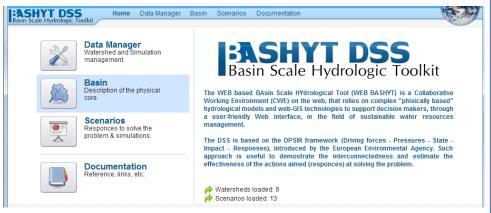
- **1. Description of BASHYT and LIVE Demo**
- 2. Technologies
- 3. Interoperability and Interfaces
- 4. Conclusion

BASHYT is a web based software to expose **SWAT** results on the WEB. A free open to use service is available at: <u>http://swat.crs4.it/Home</u>

BASHYT is a Collaborative Working Environment (CWE): a easy to use and extensible development framework, for constructing spatially enabled web applications based on the SWAT model (but not only).

BASHYT is a *problem-solving* platform *for the* **Environmental Sciences** for the integration of

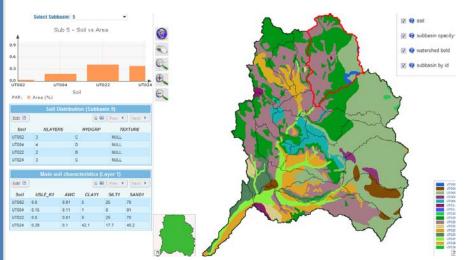
- resources for
 - communication
 - computation
 - data storage
 - visualization
- simulation software
- instrumentation
- human know-how


Objectives of the framework

- ✓ Enable users the expose their SWAT simulation on the WEB and to ease the report production mechanism
- ✓ Share data, knowledge through a web based environment
- Expose interoperability services on the WEB to create a broader user experience
- ✓ Enable developer build applications based on other portals exploiting web interoperability services: <u>mesh up of web</u> <u>applications</u>
- ✓ Bridge the gap between science and end users / citizens!

BASHYT works in tandem with the AvSWAT/ArcSWAT GIS desktop programs

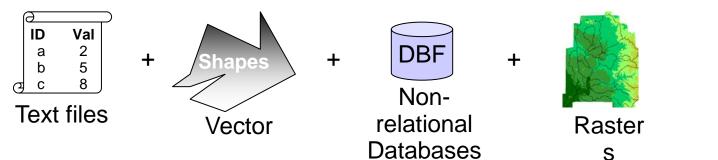
Home page / access point to the portal



Module section to design Applications

http://swat.crs4.it/Home

BSHYT digests SWAT data and expose on the WEB dynamic reports


The main features

- ✓ All the model-related data are organized into complex
 Relational DB infrastructures.
- ✓ Exploit user-roles policies to define complex security and access strategies and differentiate the interfaces;
- ✓ Applications can be edited directly using the browser (wiki like), no external plug-in is required;
- ✓ The BASHYT is developed using the Argilla Java framework and is exposed via the Tomcat servlet container
- Argilla provides a live programming web template environment, based on Apache Velocity
- ✓ The GIS rendering is based on the Mapserver technology (server-side) and visualized by msCross, a AJAX client-side interface

SPRITE/SWATSL: SWAT Data processing

The SWAT model uses several different data formats

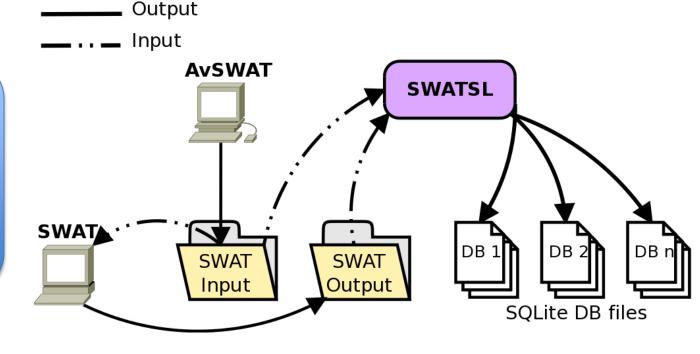
BASHYT needs to access data through a relational database

A client-server procedure, namely SPRITE and SWATSL, imports the data into relational databases on the server.

Imported data include: output.rch, output.sub, AvSwatDB/*.dbf, ESRI Shapefiles, Toporep.txt, etc.

BASHYT natively implements JDBC connections.

The SpatiaLite engine is used for data archiving of GIS data.


SPRITE/SWATSL data flow

SWATSL is a C++ library that hide the complexity of the SWAT files architecture providing a uniform structured dataset for the user

SWATSL builds one or more SQLite database files and populate them with SWAT simulations (output/input)

After SWATSL has done its work, data can be accessed using common SQL queries

SPRITE is a Java windows program to retrieve I/O from a SWAT project and upload the data to BASHYT

BASHYT Interoperability

BashytAPI

The **BashytAPI** is the client library developed in the Java programming language to access and use the CWE web service interface.

The **BashytAPI** offers a uniform way of identifying and accessing to resources, and thus increasing the interoperability between applications.

The argillaAPI explicitly targets the needs of other web environment (e.g. **eGLE** or **gSWAT)**

The WEB Front End

The application level of the CWE portal exposes a set of web applications and services:

- Data Manager
- Basin
- Scenarios
- Documentation
- Argilla Control Menu
 - the Module section: Connections, Users, Charts, Tables, Maps/Layers, Forms, etc.

Example of a Web applications

The temperature regime has been registered by the Donori S. Michele climatic gage, located close to the basin. Average monthly temperature ranges from 8 C (January and February) to 25 C (July and August). Precipitations are largely confined to the winter months, the rainfall regime is characterized by a peak rainfall in December (83 mm) and a minimum in July (8 mm), with an average value of 591 mm/year.

The spatial distribution of the water balance components is not homogeneus. Yearly avarage precipitation (standard deviation) values over a 70 year period simulation (22-92) range between **473.17** (**120.78**) and **640.11** (**163.28**). Yearly avarage evapotraspiration (standard deviation) values range between **221.15** (**45.79**) and **431.05** (**87.27**). Yearly avarage water yield (standard deviation) values range between **367.18** (**120.78**) and **367.18** (**163.28**) on the North-East.

The Argilla engine

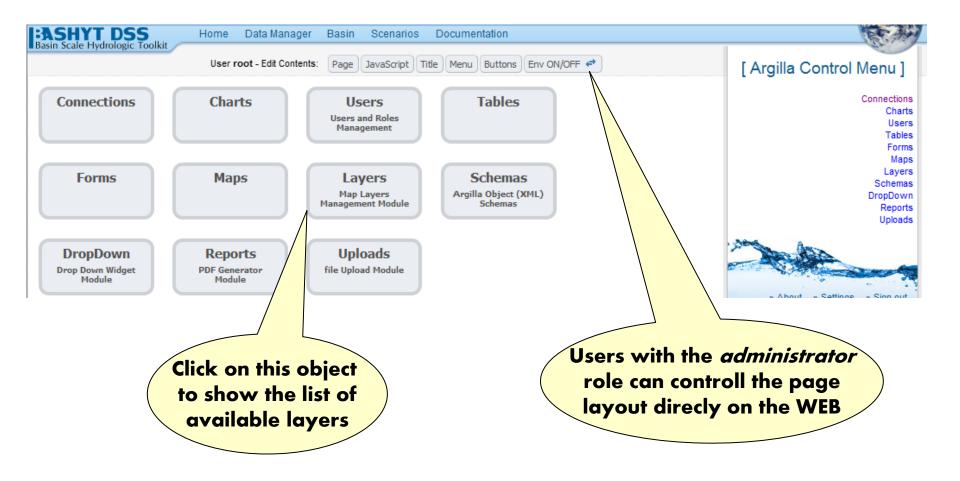
The engine allows to **integrate several client and server technologies** in a single **development envir**onment, fully programmable and **accessible** by the **web browser**.

Developers can write **server side codes**, and use the framework tool for debugging and validation. The Velocity Template allows a strong integration with low-level API written in Java (working as PHP does).

All web applications and pages exposed are described in a **structured and hierarchical way within the virtual filesystem**:

- In such hierarchy, each folder is a node of the portal: each node is accessible from the browser via a specific URL, and contains (virtual) data files such as the Velocity scripts, HTML, JavaScript, which contribute to the composition of the page

The Modules


The module section exposes though easy to use web interfaces a variety of services to shape XML objects for charts, maps, tables, PDF, and forms production.

Basin Scale Hydrologic Toolkit	Home Data Manager	Basin Scenarios Do	ocumentation	であ
	User root - Edit Contents:	Page JavaScript Title	Menu Buttons Env ON/OFF	[Argilla Control Menu]
Connections	Charts	Users Users and Roles Management	Tables	Connections Charts Users Tables Forms Maps
Forms	Maps	Layers Map Layers Management Module	Schemas Argilla Object (XML) Schemas	Layers Schemas DropDown Reports Uploads
DropDown Drop Down Widget Module	Reports PDF Generator Module	Uploads file Upload Module		About a Setting a Sign out

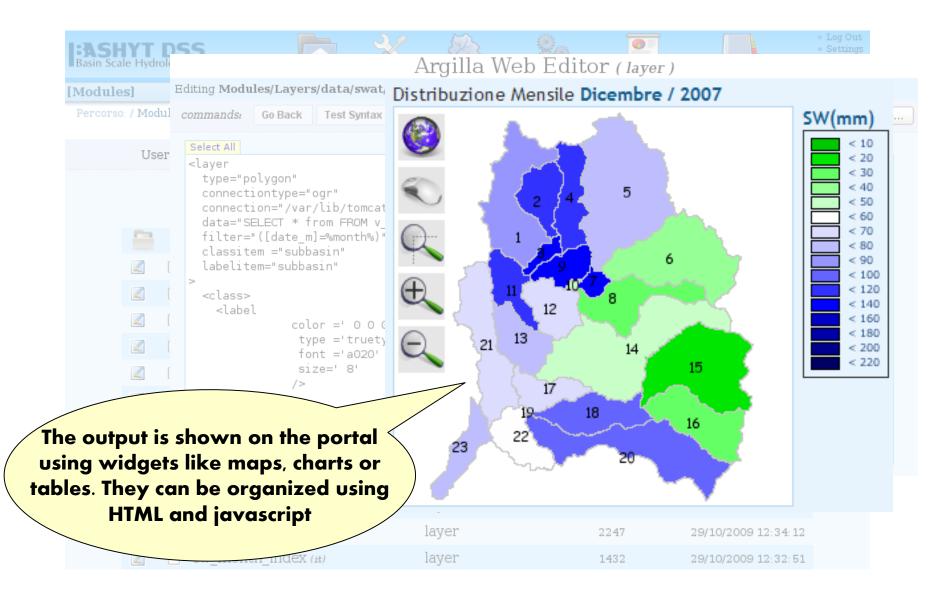
Modules permit the massive use **of preset schemas** stored in the database in a structured XML form. Each object refer to its schema and describes parameters (e.g. to control layout) and data sources.

The CWE report production environment

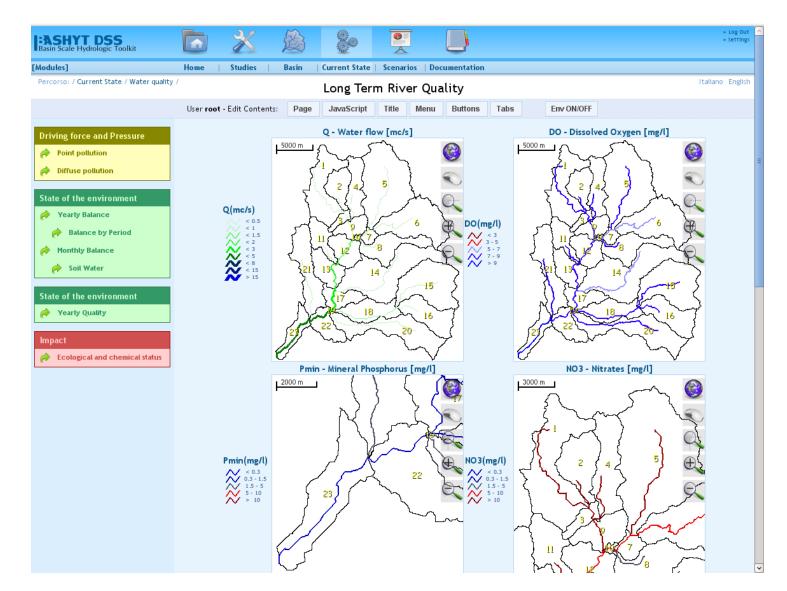


The report production

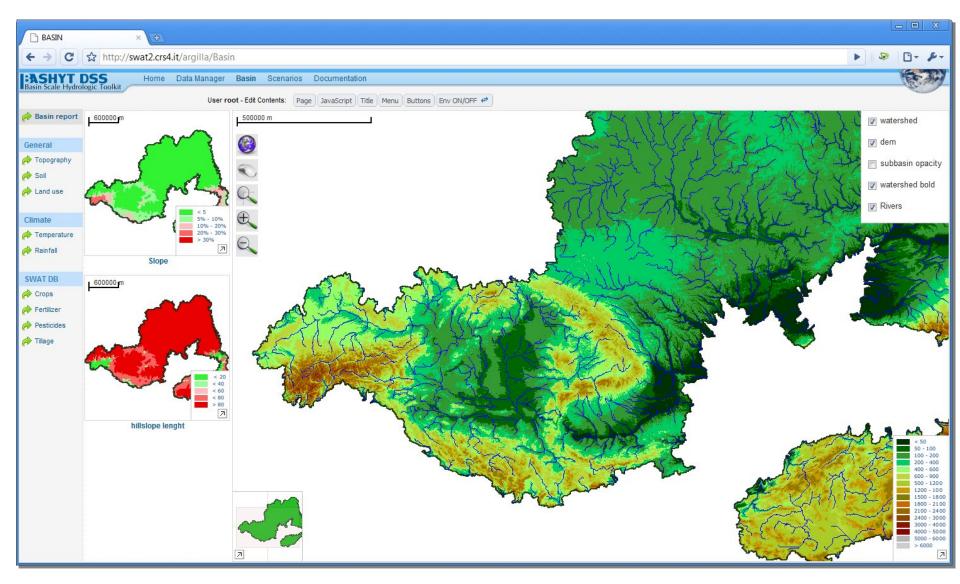
[Modules	5]		Ho	me	Studies	Basin	Current	t State Sc	enarios	Documentation	
Percorso:	/ Mod	ules/	Layers /							Italian	o English
	Use	er ro	ot - Edit Contents:	Page	JavaScript	Title	Menu	Buttons	Tabs	Env ON/OFF	
			Name (lang)			Make Dir ype	Remove Siz	e (Bytes)		Date/Time	
			/					_			
	2		river (it)	Cli	ick <i>Nev</i>	and (create	236	3	29/10/2009 11:43:07	
	\swarrow		watershed (it)	a	new ob	ject in	stance	263	}	29/10/2009 11:43:19	
	\swarrow		subbasin (it)		10	yei		410)	29/10/2009 11:43:37	
	2		point_sources (it)		la	yer		285	5	29/10/2009 11:44:26	
	\swarrow		pcp_out (it)		la	yer		558	3	29/10/2009 11:44:37	
	\swarrow		wyld_out (it)		la	yer		3514	ł	29/10/2009 11:44:49	
	\swarrow		pet_out (it)		la	yer		3498	3	29/10/2009 11:45:09	
	\swarrow		et_out (it)		la	yer		3482	2	29/10/2009 11:45:22	
	2		sw_month_out (it)		la	yer		2512	2	29/10/2009 12:32:07	
	2		sw_avg_month_b	(it)					-	29/10/2009 12:33:16	
	2		sw_avg_month_ou	lt (it)	$\overline{}$			ame ai		29/10/2009 12:34:12	
	Z		sw_month_index (it)		edit ar	n exist	ing obj	ect	29/10/2009 12:32:51	



The report production



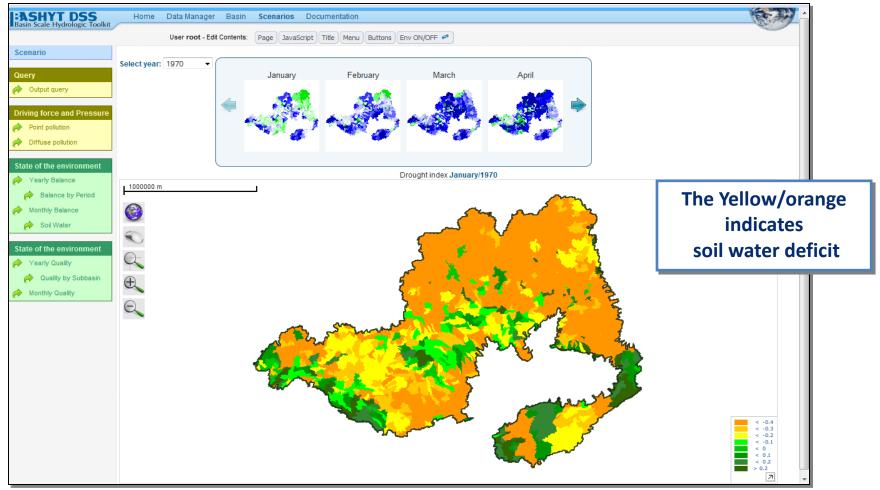
The BASHYT/Argilla production environment



Web Interactive Interfaces

The Black Sea Catchment

The Black Sea Catchment


Modeling Environmental Dynamics: water quality and quantity states on rivers

BASHYT DSS Basin Scale Hydrologic Toolkit	Home Data Manager Basin Scenarios Documentation	(Rest)
Bush scale Hjulologic Tookk	User root - Edit Contents: Page JavaScript Title Menu Buttons Env ON/OFF 🖛	
Scenario	Select time range: 1970 - 1970 - Redraw	
Query	Monthly Water Balance – from 1970–1 to 2008–1	
🎓 Output query	405	
Driving force and Pressure	360	
Point pollution	315	
niffuse pollution	270	
State of the environment	225	
A Yearly Balance	180 M MANAM WO WA und MAAAA A	
Alance by Period		
A Monthly Balance		
ጵ Soil Water	45 MAARAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
State of the environment	0 1970-1 1972-12 1975-11 1978-10 1981-9 1984-8 1987-7 1990-6 1993-5 1996-4 1999-3 2002-2 2005-1 2007-12	
	PAR: ■ ET ■ Prec ■ WYLD ■ SW	
🎓 Quality by Subbasin		

Modeling Environmental Dynamics: the agricultural drought for the Black Sea catchment

The Black Sea Catchment

Future work will be done to:

- improve web services (**O.G.C.** services: **WFS, WMS**, ...)
- expose catalogs of geodata and simulations

We will be working on **scenarios production mechanisms** to be run directly on the web

We will integrate climate (ensemble, ERA 40, etc.) data into BASHYT data flow from web data providers.

BASHYT works in tandem with the pre-processing **AvSWAT** and **ArcSWAT** GIS production environment.

BASHYT is the first web interface to SWAT that exposes a **fully programmable environment** to construct spatially enabled applications on the WEB.

It has been widely tested on real case studies on available datasets: Gange (India), Cedrino (Italy), San Sperate (Italy), Black Sea Catchment, ...

first working version of BASHYT is up and running at:

http://swat.crs4.it/

Register to use the system

This work has been supported by:

EnviroGRIDS (<u>http://envirogrids.net/</u>): With 30 partners distributed in 15 countries, the project is contributing to the Global Earth Observation System of Systems (GEOSS) by promoting the use of web-based services to share and process large amounts of key environmental data.....

CLIMB - **Climate Induced Changes on the Hydrology of Mediterranean Basins (**(<u>http://www.climb-fp7.eu</u>/): Innovative scientific and technological measures will play an important role in addressing projected climatic changes and their impacts on the freshwater resources of the

Regione Autonoma della Sardegna – RAS (Italy).

SPRITE

Sprite is a stand alone Java program that process AvSWAT/ArcSWAT projects to extract the necessary information to be uploaded on BASHYT:

The main tasks performed by SPRITE are:

- *Extract* a minimum dataset
- *Transform* it (normalize its content)
- Populate a XML metadata file
- archive the data in 2 zip folders:
 - Watershed
 - Scenarios
- connect and *upLoad* the data to any BASHYT server

🛃 SPRITE				
	()	1		Se la
ArcSWAT Source	AvSWAT Source	Update	Upload	About
Username				
Output pat	h			
Project direct	ory			
Select userwgn	table			
Select DEM				
Or				
	rectory from Raste			
Choose one simulat Description)	
Choose one simulat Description	tion folder at time (Scenarios)	
Choose one simulat		Scenarios)	
Choose one simulat Description	tion folder at time (Scenarios		rshed)

SWATSL

SWATSL is the server side application and work also as a standard ETL. It is programmed in C and its purpose is:

- 1. Extract the data,
- 2. *Transform* it to fit the operational needs
- **3. Create an empty logical schema** of the geo-relational database (a spatialite db file). Such schema is fixed.
- 4. *Populate* it. SWATSL will import the data within the schema.
- The transform stage applies a series of rules and functions to the extracted data from the source to derive the data for loading into the db file.
- SWATSL can be commanded from the application side, so each user of the portal with the privileges will be allowed to run it to import the uploaded projects within the system.