Water footprint analysis of biofuel feedstock using SWAT model

presented by

Pushpa Tuppad,

Co-authors: R. Srinivasan, Deepa Varma, Debjani Deb

2012 International SWAT Conference July 18th-20th, 2012, New Delhi, India

Background

- Water use and water availability is region specific and essentially linked to the hydrology of the region
- Understanding water variability and water accounting at watershed scale is considered appropriate
- How do biofuels expansion strategies impact water availability, consumption and discharge?

Objectives

- To demonstrate the link between SWAT hydrological variables and WF parameters – blue, green and grey water components
- Assess the hydrological WF of advanced biomass feedstock – mainly corn stover and switchgrass

- The UMR (2100 km) extends from Lake Itasca in MN to a point just north of Cairo, Il (confluence with Ohio River).
- The UMR is the only water body in US recognized as both a "nationally significant ecosystem" and a "nationally significant commercial navigation system"
- >30 million people rely on UMR for public and industrial supplies, power plant cooling, wastewater assimilation, and other uses.

Watershed Characteristics/Model inputs

- Stream: NHD
- ✤ Soil: STATSGO (1:250000)
- Subbasin: 8-digit HUC (total of 131) (Subbasin area: 924 km² to 8,496 km²; Avg 3,753 km²)
- HRUs: 14002 (5/10/5 % threshold for landuse/soil/slope)
- Fertilizer and Manure: chemical fertilizer through auto-fert for hay & row crops
- Weather: Interpolated NCDC daily precip & temp data values at 2.5 min (around 4 km) resolution and aggregated to 8-digit subbasin
- Crop mgmt: CTIC
- Number of years of analysis: 41 (1961-2001)

Basin Scale Watershed Accounting

SWAT Simulated Average monthly WF components for existing condition of UMRB (1961 to 2001)

SWAT Simulated Average monthly Grey water components for existing condition of UMRB (1961 to 2001)

Green Water Availability (Precipitation) mm

Blue Water (Water Yield) mm

Grey Water (Sediment Yield) t/ha

Scenarios

		Crop rotation	Stover harvest rate, %	
Current (CS/CC/SS/CCS/CSS)		Corn-soybean	0	
Scenario 1: Ec	onomic expansio	n – yield intensificati	on	
CC		Continuous corn	0	
Scenario 2: En	vironmental con	sideration – residue 1	removal rates	
CC25		Continuous corn	25	
CC50		Continuous corn	50	
CC75		Continuous corn	75	
Scenario 3: Environmental consideration – energy grass intervention				
Scenario	Percent cropland replaced with switchgrass			
SW25	25			
SW50	50			
SW75	75			
SW100	100			

Scenarios

Scenarios	% Change WYld	% Change ET	%Change SYld	% Change TN
Scenario 1(a): Economic expansion – yield intensification				
CC	0.5	-0.2	-1.5	1.4
Scenario 2(a): Environmental consideration – residue removal rates				
CC25	6.2	-2.6	-3.0	8.7
CC50	7.9	-3.4	-6.0	12.0
CC75	9.2	-4.1	-27.0	4.1

Scenario 2(c): Environmental consideration – energy grass intervention

Scenarios	% Change WYld	% Change ET	%Change SYld	% Change TN
SW25	16.5	7.8	97.6	67.6
SW50	9.5	5.8	96.8	59.8
SW75	-8.1	7.2	96.8	65.9
SW100	-13.6	6.1	96.3	66.9

Switchgrass	Area in Sq km
swch25	31263
swch50	62575
swch75	94595
swch100	125048

Conclusions

- The UMRB is a region of relatively low water stress however, within the basin there is considerable variability in rainfall– its Northern parts are drier than its southern parts.
- Continuous corn modified the hydrology variables by only 0.5 to
 <2% and therefore its impact is not significant.
- Introduction of switchgrass into the land use improved water flow in the watershed; the impact was felt mostly for groundwater resources (3-20%).Therefore, biofuels expansion in the UMRB is not expected to face water stress.
- High rainfall central-southern areas of the UMRB contribute most to nutrient discharge because of the larger share of area under corn to the total land use

Conclusions contd....

- Progressive stover removal rates of 25-50-75 percent increased sediment yield (erosion) from 3-6-27% from baseline respectively.
- Switchgrass increased water availability and reduced erosion/nutrient loading into the river.
 - With a 50% change from corn to switchgrass in the low-yielding corn areas, the impact can be significant soil erosion decreased by 95% and N-loading in to the river also decreased by 70%.
 - Therefore, integrating switchgrass into the agricultural land use could serve the dual purpose of biomass expansion as well as reducing hypoxic conditions in the Gulf of Mexico.
- Although data intensive, SWAT emerged as a powerful tool to measure the impact of biomass expansion on the hydrology of the watershed at variable scales.

Texas A&M System

Questions/comments?

Contact

Deepa Varma: deepa.varma@shell.com R. Srinivasan ("Srini"): r-srinivasan@tamu.edu Pushpa Tuppad: ptuppad@brc.tamus.edu

- The amount of stover that needs to remain in the field to maintain SOC depends on
 - crops and cropping pattern
 - tillage practices
 - soil type and erodibility
 - field characteristics (slope, climate)
- The SOC affects soil cation exchange capacity, aggregate stability, water holding capacity, and soil microbial activity
- The residue harvest rates need to account for both erosion potential and maintenance of SOC
- The USDOE considers switchgrass as a viable bioenergy feedstock because it is broadly adapted and has high yield potential on marginal croplands

%change wyld	% change et	%change syld	%change tn
9.2%	-4.1%	-25.1%	4.1%

75% stover removal

%change wyld	% change et	%change syld	%change tn
-13.6%	6.1%	96.3%	66.9%

100% Switchgrass adaptation

Water requirement simulated by SWAT

Feedstock	Water requirement m ³ /t	WF, L of water/L of ethanol
Corn grain	848	2005
Corn biomass	318	874
Switchgrass	299	818