STREAM FLOW MODELING IN THE NACUNDAY RIVER BASIN (PARAGUAY, SOUTH AMERICA) USING SWAT MODEL

Sandra Mongelos and Manoj K. Jain

DEPARTMENT OF HYDROLOGY INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE – 247 667 (INDIA) JULY, 2012

Hydrological Models

- **WATAT Serie and Water Assessment Tool**) Prediction Project)
- •H&PEr(Hydrologic Simulation Program
 - •Forteravil)EW Interface
- SHETRAN(System
 - •HRed adiboig i que per esentation of Europeere animation of catchment characteristics
- SWAT (Soil and Water Astress meile fility)

...availability and user-friendliness in handling input data (Arnold et al.,1998)

... is a model coupled with geographic information system (GIS). The principal advantage of such a model is that it can realistically represent the spatial variability of catchment characteristics (Mishra et al., 2007).

Developed and maintained by the USDA

SWAT in South America

• BRAZIL :from 1999 to 2010, over 70 publications such as theses, dissertations and articles about the use of the model in Brazilian watersheds were identified.

• URUGUAY : simulation of hydrologic response of two catchments during the pretreatment period and prediction of the hydrologic effects of converting the native pasture to pine the native pasture to pine hantation (YON Stackelberg et al. 2007).

• ARGENTINA SWAT model was applied to calibrate and validate stream flow in an agricultural micro basin in the Pampa Ecoregion, with successful results on daily basis and poor results on monthly basis (Behrends et al. 2011).

Objectives of the work

- 1. Semisitivity analysis of the model parameters assumed in the model
- 2. Calibration of the parameters considered in the model.
- 3. Validate the performance of SWAT
- 3. and the feasibility of using this model model as a simulator of runoff at a catchment scale in the sub tropical As a simulator of runoff at a catchment area. Scale in the sub tropical region of Nacunday river catchment area.

Study Area: NACUNDAY BASIN

ARC SWAT INPUT DATA TREE

DEM Digital Elevation Map

➢Global SRTM data

(<u>http://glcfapp.glcf.umd.edu:</u> 8080/esdi/index.jsp)

≽90-m resolution

Geographic coordinate system:

GCS_WGS_1984,

➢ Projected to:

WGS_1984_UTM_ZONE_21S

2003

LAND USE MAP

2003 and 2009 Landsat-5 Thematic Mapper images

➤30-m spatial resolution

Geographic coordinate system:
 GCS_South_American_1969.
 Reclassification

WGS_1984_UTM_ZONE_21S

2009

SOIL MAP

➢ FAO-UNESCO Soil Map of the World 1971-1981 (DSMW)

downloaded from the World Soil Information (ISRIC) website

(<u>http://www.isric.org/</u>).

The spatial data's resolution is 5 by 5 arc-minutes grid (Batjes, 2006)

Geographic coordinate system:

GCS_South_American_1969

Projected to the WGS_1984_UTM_ZONE_21S

WEATHER STATIONS LOCATIONS

Daily Rainfall , Temperature, Relative Humidity

From01-01-1999 to 30-09-2009.

➢ Barra Station given by the National Agency of Electricity (ANDE)

NAME	XPR	YPR	LAT	LONG
BARRA	700 560.44	7 122 162.72	26°00'20.16" S	54°59'45.96"W

CLIMATE

- Meteorology data provided by ANDE
- Daily data for:
- ✤ Rainfall (mm)
- Temperature (Maximum, Minimum) (°C)
- Relative Humidity(%)
- From Jan 1, 1999 to Sept 30, 2009.
- Wind speed and Solar Radiation generated by weather generator.

Data

SOIL

FAO-UNESCO Soil Map (<u>http://www.isric.org/</u>).

> Two types of soils units were identify in the study area

Units are 5614 and 5717

Several physical and chemical parameters of soil layers.

OBJECTID	MUID	SEQN	SNAM	S5ID	СМРРСТ	NLAYERS	HYDGRP	SOL_ZMX	ANION_EXCL	SOL_CRK	TEXTURE
1.00	5614.00	2.00	FAO5614			5.00	С	1000.00	0.50	0.50	CL
2.00	5717.00	1.00	FAO5717			5.00	В	1000.00	0.50	0.50	FSL-FC
SOL_Z1	SOL_BD1	SOL_AWC1	SOL_K1	SOL_CBN1	CLAY1	SILT1	SAND1	ROCK1	SOL_ALB1	USLE_K1	SOL_EC1
200.00	1.15	0.05	1.50	12.27	34.00	24.00	42.00	2.00	0.27		0.00
200.00	1.40	0.10	3.40	9.20	20.00	20.00	60.00	8.00	0.27		0.00
SOL_Z2	SOL_BD2	SOL_AWC2	SOL_K2	SOL_CBN2	CLAY2	SILT2	SAND2	ROCK2	SOL_ALB2	USLE_K2	SOL_EC2
400.00	1.24	0.04	1.00	6.41	44.00	21.00	35.00	1.00	0.00		0.00
400.00	1.40	0.10	1.50	4.90	27.00	19.00	54.00	8.00	0.00		0.00
								-			
SOL_Z3	SOL_BD3	SOL_AWC3	SOL_K3	SOL_CBN3	CLAY3	SILT3	SAND3	ROCK3	SOL_ALB3	USLE_K3	SOL_EC3
600.00	1.25	0.04	1.00	4.92	50.00	19.00	31.00	4.00	0.00		0.00
600.00	1.40	0.10	1.30	4.00	32.00	18.00	50.00	10.00	0.00		0.00
SOL_Z4	SOL_BD4	SOL_AWC4	SOL_K4	SOL_CBN4	CLAY4	SILT4	SAND4	ROCK4	SOL_ALB4	USLE_K4	SOL_EC4
800.00	1.40	0.05	0.90	3.65	52.00	18.00	30.00	4.00	0.00		0.00
800.00	1.45	0.11	1.20	3.00	35.00	18.00	47.00	10.00	0.00		0.00
SOL_Z5	SOL_BD5	SOL_AWC5	SOL_K5	SOL_CBN5	CLAY5	SILT5	SAND5	ROCK5	SOL_ALB5	USLE_K5	SOL_EC5
1000.00	1.39	0.05	0.80	3.50	54.00	17.00	29.00	4.00	0.00		0.00
1000.00	1.40	0.09	1.10	2.80	36.00	18.00	46.00	6.00	0.00		0.00
											-

METHODOLOGY

For any process studied with ^{SW} SWAT, water balance is the QRi) SW, Crivingson Wate continue WO; 3W is the initial soil water content(mm H₂O); t is the time for the simulation period days), hed. **R**_i precipitation, $\mathbf{S}_{\mathbf{W}}^{\text{runoff}} = \mathbf{S}_{\mathbf{W}_{0}}^{\text{runoff}} + \sum_{i \in \mathbf{N}_{0}}^{\mathbf{R}_{i}} (\mathbf{R}_{i} - \mathbf{Q}_{i} - \mathbf{E}_{i} - \mathbf{P}_{i} - \mathbf{Q}_{i})$ Et evapo-transpiration i=1**P**_i Percolation QR_i return flow, on day i(mm H₂O).

Parameters involved in stream flow modeling.

RELATIVE ORDER OF SENSITIVITY OF PARAMETERS GOVERNING RUNOFF RESPONSE

			•	
Sensitivity Order	Parameter code*	Lower	Upper	Sub basin data
1	Alpha_Bf	0	1	*.gw
2	Surlag	0	10	*.bsn
3	Ch_N2	0	1	*.rte
4	Ch_K2	0	150	*.rte
5	Cn2	-25	25	*.mgt
6	ŧαιτιδι	SEN	ISITIN	*hrty.bsn
7	Gwqmn		1000	*.gw
8	Sol_Z	NAIN	212\	*.sol
9	Gw_Delay			*.gw
10	Sol_Awc	-25	25	*.sol
11	Canmx	0	10	*.hru
12	Blai	0	1	*crop.dat
13	Gw_Revap	-0.036	0.036	*.gw
14	Sol_K	-25	25	*.sol
15	Ерсо	0	1	*.hru,*.bsn
16	Revapmn	-100	100	*.gw
17	Sol_Alb	-25	25	*.sol
18	Slope	-25	25	*.hru
19	Biomix	0	1	*.mgt

Range

Monthly runoff Calibration Period 2001-2005

Daily Runoff Calibration Period 2001-2005

STATISTICAL TECHNIQUE <u>Coefficient of Determination (R²)</u>:

$$\mathbf{R}^{2} = \left[\frac{\sum_{i=1}^{n} (\mathbf{O}_{i} - \mathbf{O}_{aver})(\mathbf{P}_{i} - \mathbf{P}_{aver})}{[\sum_{i=1}^{n} (\mathbf{O}_{i} - \mathbf{O}_{aver})^{2} \sum_{i=1}^{n} (\mathbf{P}_{i} - \mathbf{P}_{aver})^{2}]^{0.5}}\right]^{2} =$$

Nash-Sutcliffe efficiency (NSE):

$$NSE = 1 - \left[\frac{\sum_{i=1}^{n} (Y_i^{obs} - Y_i^{sim})^2}{\sum_{i=1}^{n} (Y_i^{obs} - Y_i^{mean})^2}\right]$$

$\frac{\text{Percent bias (PBIAS):}}{\text{PBIAS}} = \left[\frac{\sum_{i=1}^{n} (v_i^{\text{obs}} - v_i^{\text{sim}}) * 100}{\sum_{i=1}^{n} v_i^{\text{obs}}} \right]$

PREFORMANCE RATING

(Moriasi et al.2007).

CALIBRATED VALUES OF PARAMETERS

Parameters Code*	Unit	Initial Value	Calibrated Value
ALPHA_BF	days	0.018	0.0075
СН_К2	mm/hr	0.5	9.7
CH_N2	n/a	0.04	0.09
CN2	n/a	73,60,85,78	42,65,61
EPCO	Fraction	1	0.8
ESCO	Fraction	0.95	0.9
GW_DELAY	days	31	3.24
GW_REVAP	n/a	0.02	0.02
GWQMN	mm	0	500
REVAPMN	mm	1	50
SOL_ALB	top layer	0.27	0.17
SOL_Z	mm	1000	1000
SURLAG	days	4	0.45
SOL_AWC	(mmH2O/mm)	0.05,0.04,0.04,0.05,0.05	0.15,0.2,0.2,0.21,0.25
SOL_AWC	(mmH2O/mm)	0.1,0.1,0.1,0.11,0.09	0.11,0.15,0.15,0.17,0.20
SOL_K	(mm/hr)	1.5,1,1,0.9,0.8	4.2,4.21,2.34,1.17,0.7
SOL_K	(mm/hr)	3.4,1.5,1.3,1.2,1.1	42.05,23.36,17.52,11.68,4.67

NSE AND R² INDEXES VALUES FOR MODEL EVALUATION IN MONTHLY AND DAILY BASIS.

	Daily		Monthly
	NSE	R2	NSE R2
Calibration			
Period	0.612	0.652	0.695 0.727
2001-2005			
Validation			
Period	0.549	0.5844	0.610 0.670
2006-2009			

YEARLY PBIAS

	DISCHARGE	SIMULATED	
Year	(mm)	(mm)	BIAS
2001	1339.5	1178.4	12.0
2002	1289.3	1281.8	0.6
2003	965.2	1121.4	-16.2
2004	1122.1	981.3	12.5
2005	748.0	628.0	16.0
2006	612.5	408.2	33.4
2007	1282.0	1070.3	16.5
2008	639.5	708.4	-10.8
2009	737.7	641.6	13.0

Monthly runoff Validation Period 2005-2009

Runoff (mm)

Daily Runoff Validation Period 2005-2009

1. During the calibration

Mon Daily

PBLAS to aried between ±16% which could be performance to eynodel Comising an enternation and the performance and the performa

2. During the Validation

The <u>PBIAS remained within 16.5% except</u> for year 2006 where the Satisfactory annual PBIAS of 33.4% as <u>Botained</u> indicating under Simulation of dischargeafrormerrood eleTonereforre on the basis of PBIAS the model performance of the model performance of PBIAS the model

2006-2009

The results obtained from model are rated **acceptable**

Despite the limitations of:
➢ Using large spatial resolution soil data
➢ Use of single rain gauge for representing catchment averaged rainfall.

The model captured rather well the dynamic of flow generation, with surface runoff uniformly distributed along the year and shallow aquifer contribution during winter's months of July and August.

 The simulated discharge from SWAT model, both for daily and monthly basis in Nacunday watershed can be rated within acceptable range of errors, so future use of the SWAT model for various scenario testing is reasonable.

RECOMMENDATION FOR FURTHER STUDIES

- Further studies may be undertaken to incorporate field-measured parameters and better representation of soil and rainfall distribution information into the model.
- Using more field measurements and fewer default values for inputs may provide better opportunity to improve further the SWAT Model's representation of processes in the Nacunday River Basin.

THANK YOU