Evaluating the Change of Hydrological Processes and Sediment Yield Considering the Impact of Climate Change

Dao Nguyen Khoi

Ph.D candidate, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan Email: dnkhoi86@gmail.com

Tadashi Suetsugi

Professor, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan

International Research Center for River Basin Environment UNIVERSITY OF YAMANASHI

Outline

- 1. Background and Objectives
- 2. Study area
- 3. Methodology
- 4. Result and discussions
 - SWAT calibration and validation
 - Climate change scenarios
 - Impacts on water balance components
 - Impacts on streamflow and sediment yield
- 5. Conclusions

Background

- ♦ IPCC report reaffirmed that "*global warming*" is occurring (IPCC, 2007).
 - Global warming leads to changes in precipitation and temperature, which affects the hydrological cycle, and thus changes the streamflow and modifies the transformation and transport characteristics of sediment as well as water pollutants.
- Understanding the responses of hydrological processes and sediment yield to climate change is important for planning and managing water resources (Kienzle *et al.* 2012).
- There are numerous studies in the literature on impacts of climate change on hydrology and sediment yield.
 - The hydrological model is first calibrated against observed data, and then run with future climate scenarios using calibrated parameters.
- Kingston *et al.* (2011) emphasized the importance of multi-GCMs evaluations in the climate change impacts.

Background

- In hydrological modeling, physically-based models are preferable (Oeurng et al. 2011).
 - Many hydrological models such as HSPF, WaTEM/SEDEM, SWAT,...
 - Soil and Water Assessment Tool (SWAT) is frequently used to assess hydrology and water quality in agricultural catchments.

≻<u>Objective</u>

To assess the impact of climate change on hydrological processes and sediment yield in Be River Catchment, Vietnam

Construction of the second construction of the s

Study area

- Catchment area: 7,650 km²;
- Main river: Be river, 350 km;
- Climate: tropical climate monsoon, with 2 seasons: rainy season (May-Oct) and dry season (Nov – Apr), annual averaged rainfall: 2,400 mm;
- Soil: relatively fertilized land (75% basalt soil) consistent with agricultural development (perennial cropland)
- Steep slope + high precipitation → the catchment become susceptible to soil erosion.
- Population total in 2010: about 1 million inhabitants.

Be River Catchment

Methodology

Methodology

• Input data preparation

Data set	Source	Resolution	Data Description/Properties
Terrain	HydroSHEDS	90m	SRTM 90m DEM
Soil types	FAO	10 km	Soil classifications and physical properties.
Land use	Sub-NIAPP	1 km	Land use classifications, 2005.
Weather	HMDC	Daily	Precipitation, min and max temperature data (1978-2007); 6 rain stations and 3 meteorological stations.
Stream flow		Daily	Phuoc Long (78-93), Phuoc Hoa (78-00).
Sediment load	HMDC	Monthly	Phuoc Hoa (99-04)

Results and discussion

For flow simulation Calibration period (81-89), validation period (90-00).

— Use daily streamflow record (78-00).

Calibration and validation

***** For sediment simulation

- Calibration period (99-01), validation period (02-04).

- Use monthly sediment load record (99-04).

→SWAT model can simulate well the streamflow and sediment yield for Be River Catchment using the calibrated parameters

Climate change scenarios

Conton constant	Center	Madalidardify -	Model resolution		
Center, country	abbreviation	Model Identify	Longtitude	Latitude	
Canadian Centre for Climate	CCCMA	CCCM3 1(T63)	3 750000	3 711126	
Modelling and Analysis, Canada	CCCMA	COCIVIS.1(105)	3.730000	5./11150	
Geophysical Fluid Dynamics	CEDI	CM2.0	2.500000	2.022471	
Laborary, USA	OFDL	CM2.1	2.500000	2.022471	
UK Met. Office, UK	UKMO	HadCM3	3.750000	2.500000	
			Khoi and Su	etsuai (2012)	

Knot and Sueisugi (2012)

> Climate scenarios for temperature

> Climate scenarios for precipitation

Impacts on water balance components

Doriod		A1B scenario						
Periou		ET	PET	SURQ	GW_Q	LAT_Q	PERC	SW
2020s	Min	-1.7	2.8	-2.0	-10.7	-5.9	-6.2	-4.7
	Max	1.5	3.8	5.8	-1.5	0.3	0.1	-1.1
	Ensemble	0.8	2.9	-0.8	-4.4	-1.5	-2.1	-2.0
2050s	Min	-0.6	4.9	-8.2	-9.6	-4.2	-4.6	-6.1
	Max	2.6	6.2	5.0	-3.2	0.0	-0.4	-2.9
	Ensemble	2.1	5.5	-2.2	-6.1	-2.1	-2.4	-3.4
2080s	Min	0.7	6.4	-6.0	-12.7	-6.2	-5.8	-7.6
	Max	3.6	9.0	11.8	-1.1	1.5	1.4	-3.4
	Ensemble	2.8	7.8	1.8	-5.7	-2.1	-1.5	-4.8

Period		B1 scenario						
Fenou		ET	PET	SURQ	GW_Q	LAT_Q	PERC	SW
2020s	Min	-2.7	2.4	-11.1	-11.9	-6.2	-6.9	-6.2
	Max	0.3	3.4	0.3	-7.0	-4.5	-3.8	-3.4
	Ensemble	-0.6	2.6	-5.3	-8.4	-4.5	-4.8	-3.8
2050s	Min	-0.9	3.5	-11.4	-12.8	-6.8	-7.3	-5.2
	Max	1.9	4.9	0.5	-4.7	-1.5	-1.7	-2.3
	Ensemble	0.5	4.2	-2.8	-6.9	-3.3	-3.4	-4.0
2080s	Min	1.1	4.2	-3.3	-6.8	-3.3	-3.0	-4.2
	Max	3.3	6.4	7.6	-1.3	1.5	-1.0	-1.8
	Ensemble	2.3	5.3	2.3	-3.0	-0.6	-0.4	-2.7

Impacts on streamflow and sediment

> Streamflow

Impacts on streamflow and sediment

Sediment yield

Conclusion

- The SWAT model could simulate streamflow and sediment yield well for the catchment.
- The climate in the study area would generally become warmer under most scenarios and drier in the 2020s and 2050s, but wetter the 2080s.
- An increase in temperature combined with variable rainfall causes variations of hydrological processes and sediment yield over the year.
- The impact of climate change on sediment yield is more variation than on streamflow and the responses of streamflow and sediment yield do not always occur in the same way.
- The impacts of climate change also would exacerbate serious problems related to water shortage in the dry season.

Conclusion

>Limitations

- Lack of sediment load data.
- The impact of land-use change is not considered in this study and land-use in the basin is assumed to keep the same in the future.
- Although it is possible to generate realistic future climate scenarios quickly for four selected GCMs, the delta change method still has the limitation. It does not modify the temporal and spatial pattern of the observed data.

Thank you!

