Problem Definition

Origin of NPS Pollution: Activities

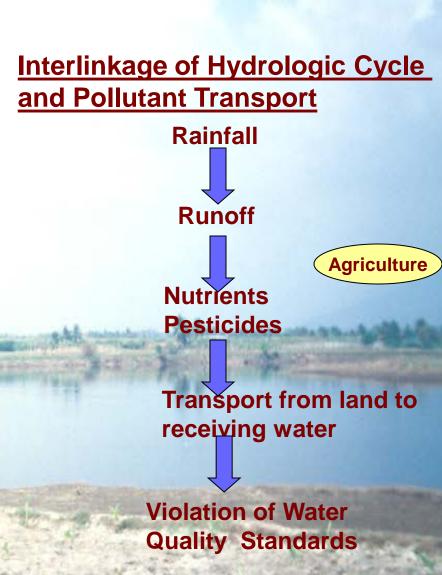
Agriculture
Habitation
Waste Disposal
Construction

Nature

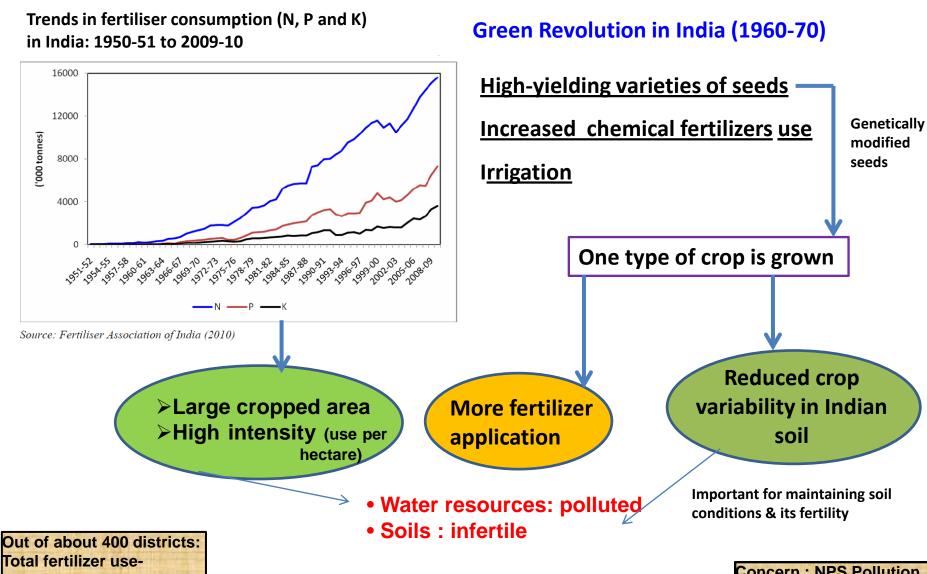
Diffused in terms of its origin and entry into the water body

Pollutants:

Nutrients (Fertilizers)


Pesticides

Sediments


Organic matter

Salts /Trace elements

Microorganisms

Indian Agriculture Scenario

25% in 27 districts
50% in 76 districts
Health-impacts - acute poisoning, cancer, neurological disorder
Societal impacts - Poor farmer, Labor problem, Loss of wages

Concern: NPS Pollution
No Guidelines: Fertilizer
application/ BMP
implementation

Need: Methodology for NPS Assessment & Control

Mathematical Models are accepted as Objective Evaluation Tool for Environmental Systems

Data intensive (Input parameters, model coefficients :- Site-specific: Scanty in developing countries)

Not user-friendly (Decision makers/Policy makers)

Visual Mapping: Understanding and Interpretation Easy (GIS-based Models: popular)

Indian Context

> Applicability of data-intensive models : Not yet well established

Due to varying environmental or agricultural conditions

No confidence in results

Variability: Soil, climatic conditions, rainfall pattern, geomorphology, Lu-LC

Farm sizes small (few acres)

Less Mechanization (No Precision farming)

No promising rainfall (June-Oct)

Flood irrigation (more runoff generation)

Broadcasting of fertilizers

Models rarely used by decision- makers for pollution control practices

Model for Sub / Micro-watershed Level studies

- Suitable for Indian scenario
- Simple & Easy to understand
- User-friendly
- Computationally efficient & accurate
- Incorporate Sufficient details in site- specific parameters/processes (local soil type, climate, crops, nutrient mobility in the soil and salinity)

Decision Making for Pollution Control Boards:

- > Selection of BMP
- Where to Locate

Buffer strips

Riparian Zone

Sedimentation Basin/Trap

NutriL-GIS: A GIS-based Model for Agricultural Watersheds

Development of a NPS Pollution
Assessment model for Agricultural
watersheds using
GIS, Hydrological Modelling Tools

Objective

User-friendly, platform independent S/W with GIS functionalities

ArcGIS Engine Runtime 9.1 VB.Net frame work 3.0 MS-Access/ XLS Hardware requirement
512 MB RAM
CPU 1.80GHz
Windows XP

Hardware/ Software Requirement

Methodology

Database Creation

Satellite data/SOI toposheets: Generate Thematic Maps

Spatial Data

HYDROLOGY

LAND USE UTILITIES

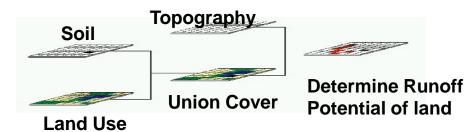
SOILS

DISTRICTS PARCELS

Procurement / Loading /preprocessing RS data

(Image, Enhancement, Georeferencing, Visual Interpretation, Ground Truth)

Generation of Base Map and GIS coverages

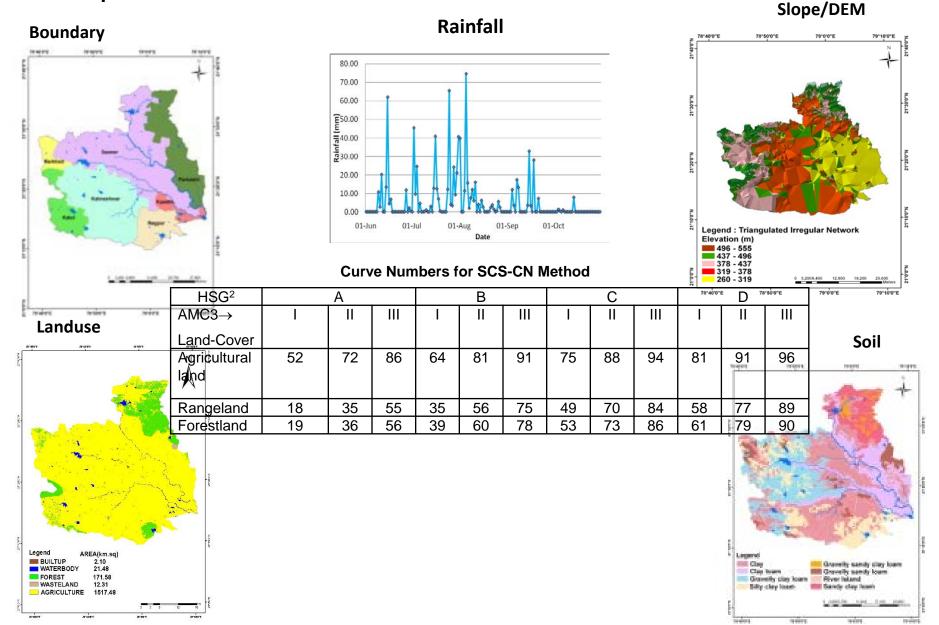

(Land Use/ Land Cover, Soil, Topography, fertilizer/pesticide usage)

Preprocessing

Creating Digital Elevation Model (DEM) & Stream network

Overlay Analysis using GIS

GriD-Based Modelling


<u>Development of Raster based program</u> for hydrologic modelling (flow direction, flow accumulation, & watershed delineation)

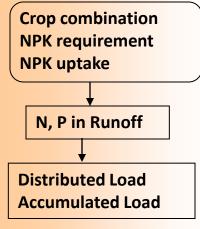
Development of Pollutant Transport Model in a Watershed

(distributed NP load in watershed)

Inputs for Hydrological Modelling

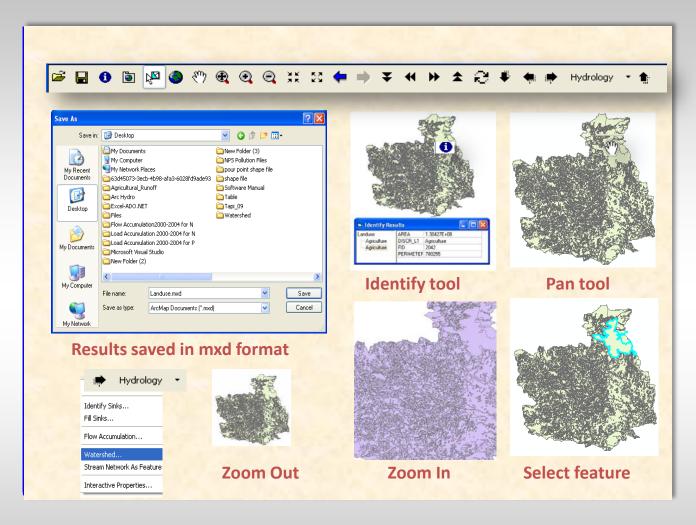
GIS Maps

Main Interface

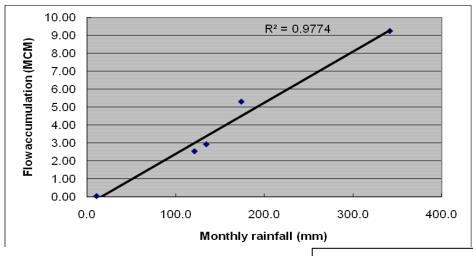

- RunEstim
- ADAM
- NutriLem

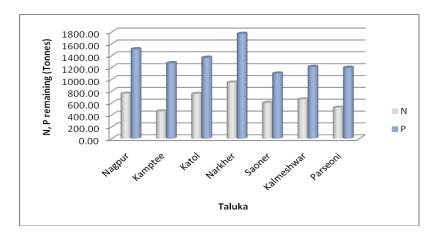
GIS Analysis

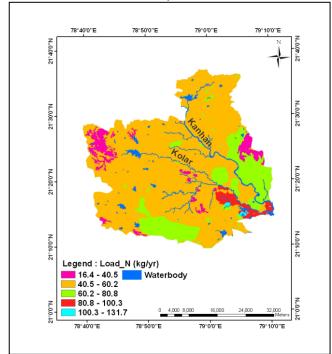
- Overlay LU & SOIL
- Assign Model Parameters
- Map to Grid Conversion
- Grid Algebra


Runoff Volume & Accumulated Runoff at Pour Points

Analysis of Agricultural Data




GIS Tools


Inbuilt GIS Utilities & Functionalities

Calibration Results

Simulation for distributed N Load

Application of NutriL-GIS for NPS Assessment & Control

In India: Need -NPS pollution control and improve water quality of drinking water in sources

For watershed based planning, distributed pollution load generation and its transport towards the mainstream

Best Management Practices (BMPs):

Optimum fertilizer usage, strip intercropping, rotational grazing, riparian buffers, engineered wetlands, and filter strips.

Nutrient pollution control measures implemented: sedimentation basins, ponds, soil erosion control; terracing, ecological farming, reforestation and creation of riparian and buffer zones

EMCs as representative of amount of nutrient carried with the agricultural runoff from a particular taluka. The estimates can be used as guideline for fertilizer application in the next cropping season

Salient Features of NutriL-GIS

Completely User-friendly

In-built
GIS Functionalities

Simple Database (.EXL)

NutriL-GIS

No Need for Costly Arc-GIS S/W

No Need to understand GIS & Mathematics

Only Runtime License-(Cheap) Necessary

Acknowledgement

Department of Science & Technology, India for funding (2006-2008)

Director, CSIR-NEERI for consistent Support

Project Team

Ashish Sharma (Senior Scientist, ESDM, NEERI, Nagpur)

Barkha Rathi (Project Assistant, ESDM, NEERI, Nagpur)
Sanjay Kothe (Project Assistant, ESDM, NEERI, Nagpur)
Sanjay Raut (Project Assistant, ESDM, NEERI, Nagpur)
Anamika (Project Assistant, ESDM, NEERI, Nagpur)
Taj (Project Assistant, ESDM, NEERI, Nagpur)

