Climate Change Impact on Water Budget and Hydrological Extremes Across Peru

Carlos Antonio Fernandez Palomino^{*1,2}, Fred F. Hattermann¹, Valentina Krysanova¹, Fiorella Vega-Jacome² Waldo Lavado³, and **Axel Bronstert²**

CLIMATE CAPACITIES

Affiliations:

- * Corresponding author: palomino@pik-potsdam.de, cafpxl@gmail.com
- 1) Research Department II Climate Resilience, Potsdam Institute for Climate Impact Research
- 2) Institute of Environmental Science and Geography, University of Potsdam
- 3) Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Peru

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

Aarhus 2023

Evidences of extreme climate variability and climate change

Changes in temperature

on Andean temperature

*Q***AGU** PUBLICATIONS

RESEARCH ARTICLE 10.1002/2015JD023126

Total temperature trend Journal of Geophysical Research: Atmospheres [°C/dec.] Impact of the global warming hiatus a) 0 --10 -20 1961-1990 -30 ● < -0.1 0<0.0 ○ > 0.0 ○ > 0.1 ● > 0.2 -40 --50 -80 -75 -70 -85 -65

In tropical Andes (2°N–18°S), a significant warming trend of 0.13°C/decade over 1950–2010 have been observed.

Evidences of extreme climate variability and climate change

Changes in glacier

Contents lists available at ScienceDirect Global and Planetary Change

journal homepage: www.elsevier.com/locate/gloplacha

Glacier loss and hydro-social risks in the Peruvian Andes

Cuchillacocha glacier

Peruvian glacier surface have decreased by over 40% since the 1970s

(Autoridad Nacional del Agua, 2014)

Evidences of extreme climate variability and climate change

Intensification of:

Floods

Flooding in Iquitos during the historic flooding of the upper Amazon river, 2012

Flooding in Lima during "Coastal El Nino", 2017

Droughts

The aforementioned climate change evidences should be a "wake-up call" for:

- Scientist to research the current and future hydro-climate conditions
- Governments, local leaders, and people to improve their preparedness for extreme weather events

To support these "wake-up calls", our present study analyze the impact of climate change on water resources of PERU.

Objectives

 To evaluate the effects of climate change on the distribution of water budget components and streamflow variability across Peru, including transboundary catchments

Previous presentations

Carlos Antonio Fernandez Palomino

Distribution and Partitioning of Water Balance Components in Peru along a Variety of Landscapes from the High Andes to the Amazon Rain Forest: Insights from a National-Scale Analysis

Carlos Antonio Fernandez Palomino

Assessing the Impact of Precipitation Input Errors on Model Parameters and Water Budget Components: Insights from Countrywide Hydrological Modeling in Peru

Study area

Model setup Area: 1.6 Million km² 2675 subcatchments 6843 HRUs

Streamflow stations (72)

Data type	Resolution	Description/source	
Spatial data			
Elevation	90 m	Surface elevation (m a.s.l.) from Multi-Error-Removed Improved Terrain (MERIT;	
		Yamazaki et al. 2017)	
Land use	100 m	Land use classification representative for the year 2015 obtained from Copernicus	
		Global Land Service (Buchhorn et al. 2019)	
Soil	1000 m	Soil parameters for SWAT based on the Harmonized World Soil Database version	
		1.21 soil data (Abbaspour and Ashraf Vaghefi 2019)	
Soil thickness	1000 m	Soil thickness data (Pelletier et al. 2016) were used to implement variable soil	
		thicknesses at hydrological response units (HRUs)	
Groundwater table depth	1000 m	Groundwater table depth data (Fan et al. 2013) were used to constrain soil	
		thickness in shallow water tables across the rainforest region	
Hydro-meteorological data			
Precipitation	Daily/0.1°	Rain for Peru and Ecuador (RAIN4PE; Fernandez-Palomino et al. 2021a,b)	
	(1981 – 2015)		
Temperature	Daily/0.1°	Gridded temperature (maximum and minimum) dataset for Peru (Huerta et al.	
	(1981-2016)	2018) as provided by SENAMHI (<u>ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/</u>)	
Solar radiation	3-hourly/0.1°	Long-term monthly averages of solar radiation based on the global surface solar	
	(1983-2018)	radiation data (Tang et al. 2019; Tang 2019) were used	
Streamflow	Daily/0.1°	Streamflow data were obtained from Peruvian ANA, SENAMHI, and HYBAM	
	(1981 – 2015)	project	
Projected climate data			
Precipitation and	Daily/0.7-2.8°	Precipitation and temperature (mean, maximum and minimum) from 10 CMIP6-	
temperature	Historic (2015 – 2100)	GCMs for two scenarios (SSP1-2.6 and SSP5-8.5) were obtained from	
	Projected (2015 – 2100)	https://esgf-node.llnl.gov/search/cmip6/.	

SWAT model performance for streamflow simulation

0.00 0.25 0.50 0.75 1.00

Kling–Gupta efficiency-KGE

PBIAS values between -10 to 10 shown in green points indicate good model performance in achieving the water budget closure

Future hydrological developments under two Shared Socioeconomic Pathways (SSPs)

Fossil-fueled development (SSP5-8.5, with 8.5 W/m2 by the year 2100)

Sustainable pathway (SSP1-2.6, with 2.6 W/m2 by the year 2100)

Changes in global surface temperature in °C relative to 1850-1900. Source: IPCC AR6 (2021)) BASD-CMIP6-PE: bias-adjusted and statistically downscaled CMIP6 projections over Peru and Ecuador (data paper under review)

3 scenarios	10 GCMs	4 variables	Period
 SSP1-2.6 SSP3-7.0 SSP5-8.5 	 CanESM5 IPSL-CM6A-LR UKESM1-0-LL CNRM-CM6-1 CNRM-ESM2-1 MIROC6 GFDL-ESM4 MRI-ESM2-0 MPI-ESM1-2-HR EC-Earth3 	 Precipitation Minimum temperature Mean Temperature Maximum temperature 	 Historical simulation (1850–2014) Future projections (2015–2100)

- The adjusted climate data were generated using the trend-preserving Bias Adjustment and Statistical Downscaling method (Lange 2019).
- and considering reliable data from regional observational datasets such as RAIN4PE for precipitation and PISCO for temperatures as reference data.
- > Data (300 GB) will be published in GFZ data service as open access data

Present-day and projected future hydrological conditions across Peru

Precipitation **Evapotranspiration** Water yield (water available) **Present-day conditions** (1985-2015)mm nm mm 750 500 2000 5685 250 1441 7 500 2000 4948 Period: 2005-2035 Period: 2005-2035 Period: 2005-2035 SSP1-2.6 SSP5-8.5 SSP1-2.6 SSP5-8.5 SSP1-2.6 SSP5-8.5 ∆ (%) 50 Δ (%) Δ (%) 50 50 25 25 25 (1985-2015)0 0 0 -25 -25 -25 -50 -50 -50 \downarrow P over lowlands (specially over the southern No changes in E over Andean basins \checkmark water yield over the lowlands, particularly in the southern region. region) \uparrow E over the lowlands and arid coastal areas ↑ water yield along the Andean basins ↑ P along the Peruvian Andes

under sustainable pathway (SSP1-2.6) and Fossil-fueled development (SSP5-8.5)

Projected changes in hydrological extremes

for the end of the century (2065-2095) relative to the baseline period (1985-2015)

Conclusions

- The first country-wide water budget and climate change analysis conducted in Peru
- Future indications of decreased water availability over the lowlands and increased availability along the Andean basins.
- Peru may face intensified floods in the Andean catchments and water scarcity during droughts in the Amazon lowlands in the future.
- Future water resources management needs to account for these developments

THANKS