

An Improved Aggregation-Decomposition Optimization Approach for Ecological Flow Supply in Parallel Reservoir Systems

Inkyung Min*, Nakyung Lee, Juyeon Jang, Sanha Kim, Seoyoung Shin, Jieun Kim and Daeryong Park

Department of Civil and Environmental Engineering Konkuk University, South Korea

Contents

01. Introduction

02. Method

03. Result

04. Conclusion

Study Background

- Recurring droughts due to inter-annual fluctuations in streamflow
- highlighting the importance of managing water resources more efficiently

Average Monthly Flow of Study Area

Study Background

Ecological Flow : Minimum quantity, quality, and timing of water required to sustain freshwater ecosystems

- Prioritized water demand, or ecological flow
 - Trade-off between maximum deficit and reliability
 - How to set the ecological flow standard

Optimization of multi-reservoir operation for securing ecological flow

Problem Statement

Reservoir Operation Rule

Problem Statement

Reservoir Operation Rule

Problem Statement

KU KONKUK UNIVERSITY Soil & Water SW

Distribution Method

Problem Statement

KU KONKUK UNIVERSITY

Distribution Method

How can we distribute the total release?

• Synchronous consideration of multiple indices (e.g., Storage, inflow)

Minimization of reaching the dead level or causing overflow

Optimization of release distribution ratios

to maintain **similar storage ratios** across all reservoirs at each time step

KU KONKUK UNIVERSITY

Problem Statement

Some reservoirs face shortages while others overflow

Spatial imbalance in water distribution

Proposed method Reservoir ----Max storage ----Min storage

Distribution Method

Co-occurrence of deficit and overflow during most of the period

Efficient Reservoir Operation

Objectives

- Enhancement of hedging rules to directly consider ecological flow in reservoir operation
- Improvement of aggregation-decomposition optimization method to enable efficient operation of parallel reservoirs
- Evaluation of the operation performance through comparison with existing two methods (SOP, THR)

Assessing the capability of operation rule to secure ecological flow

Method

Study Process

Flexible and implementable tool for balancing supply and ecological objectives

Study Area

SWAT Model – Inflow Generation

SWAT Model – Ecological Flow Scenarios

- No official ecological flow standard in this area
- Using various **flow analysis methods** to estimate ecological flow thresholds

Ecological flow estimation method			
Flow Duration Curve Shifting	Tennant (Yearly/Monthly)	Tessman	Q95 / 7Q10
Reduces the original flow duration curve while preserving flow patterns	Sets ecological flow as 30% or 50% of the Mean Annual Flow (MAF) or Mean monthly Flow (MMF)	Divides the year into three periods based on the ratio of MAF to MMF	Low flow exceeded 95% of the time 7-day low flow that occurs once every 10 years

Reservoir Operation Rule

- 0-SWA : **All** available water
- SWA–MWA : A portion of water demand
- MWA-EWA: Full water demand and partial ecological flow
- EWA-Overflow : Full water demand and ecological flow
- Overflow

Reservoir Operation Rule

- ➔ Annual domestic and industrial water demand is evenly distributed monthly
- → Annual agricultural water demand is converted to monthly data using average distribution patterns

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month (mmm)

Prioritized use of release to meet water demand (Domestic, Industrial, Agricultural)

Only the remaining flow after meeting water demands is released into the river for ecological flow

18 / 32

Optimization Algorithm

1) Outer optimization for total release 1) Water demand deficit rate (%), DDV $\frac{\sum_{t=1}^{T} D_t - R_t^*}{\sum_{t=1}^{T} D_t} * 100 (\%)$ 2) Ecological flow deficit rate (%), EFV $\frac{\sum_{t=1}^{T} EF_t - Q_t}{\sum_{t=1}^{T} EF_t} * 100 (\%)$ 3) Maximum monthly deficit rate of ecological flow (%), MED $\frac{Max (EF_1 - Q_1, EF_2 - Q_2, \dots, EF_T - Q_T)}{Max (EF_1, EF_2, \dots, EF_T)} * 100 (\%)$

2) Internal optimization for distribution

: Minimizing the standard deviation of each reservoir's storage rate after the release

$$\sum_{t=1}^{T} std\left(\frac{S_{1,t} + I_{1,t} - R_{1,t}}{C_1}, \frac{S_{2,t} + I_{2,t} - R_{2,t}}{C_2}, \dots, \frac{S_{N,t} + I_{N,t} - R_{N,t}}{C_N}\right)$$

Optimization Algorithm

Constraints

- 1) Water balance $S_{n,t+1} = S_{n,t} + I_{n,t} R_{n,t}$
- 2) Min / Max storage $S_n^{min} \leq S_{n,t} \leq S_n^{max}$
- 3) Min / Max release $R_n^{min} \le R_{n,t} \le R_n^{max}$

4) Hedging parameters $0 < SWA_t < D_t$, $SWA_t < MWA_t < EWA_t$, $MWA_t < EWA_t < D_t + EF_t + C^*$

| **Result**

SWAT Model – Estimation of Inflow

SWAT Model – Ecological Flow Scenarios

Estimated natural flow

The highest ecological flow \rightarrow FDC Shifting

Optimization of Parallel Reservoir Operation

Optimization of hedging rules

- Training period : 2016 ~ 2019 (4 years)
- Testing period : 2020 ~ 2023 (4 years)
- Operation step : Monthly

Optimization of Parallel Reservoir Operation

- AHRE has a 97, 99% water demand satisfaction rate during training and testing periods.
- AHRE maintained high performance, outperforming SOP and THR.

Water demand (Domestic, Industrial, Agricultural) supply

Optimization of Parallel Reservoir Operation

- AHRE has a 11, 5% ecological flow deficit rate during training and testing periods.
- AHRE maintained high performance, outperforming SOP and THR.

Downstream flow

Evaluation of the Operation Performance

- AHRE demonstrated the most stable and consistent operation.
- THR frequent exceed the normal pool level indicate less effective water use.
- During the testing period, the same stable pattern appeared.

Water level of each reservoir

Evaluation of the Operation Performance

Deficit (10⁶ m³)

- AHRE outperformed both SOP and THR across almost performance metrics.
- AHRE significantly reduced the maximum deficit of monthly ecological flow

Evaluation of the Operation Performance

- Radial distance from the center
 → Standard deviation
- Azimuthal angle within the quadrant
 → Correlation coefficient between the ecological and downstream flows
- Spatial distance between circles
 → Root-mean-square deviation, RMSD

Downstream flow of **AHREs** is **most similar to ecological flow** among the three methods

→ Efficient reservoir operation

Taylor diagrams

Conclusion

During the operation period 2016 – 2023

- The water demand deficit rate was the smallest for AHREs, followed by THRs, and then SOPs.
- The ecological flow deficit rate was the smallest for AHREs, followed by THRs, and then SOPs.
- The maximum monthly ecological deficit was the smallest for AHREs, followed by THRs, and then SOPs.

 Ensured stable ecological flow throughout the operational period
- AHREs minimized water level fluctuations and reaching the dead and normal pool level in parallel reservoirs.
 → Better drought response capabilities
- → AHRE method can operate the parallel reservoirs more efficient rather than SOP and THR.

THANK YOU FOR LISTENING QUESTIONS ?

mink0712@konkuk.ac.kr

Acknowledgments

This research was supported by Korea Environment Industry & Technology Institute(KEITI) through Aquatic Ecosystem Conservation Research Program(or Project), funded by Korea Ministry of Environment(MOE)(RS-2022-KE002214) and Human Resources Development Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Ministry of Trade, Industry and Energy, Republic of Korea (No.RS-2023-00237035)).

Study Process

Optimization of Parallel Reservoir Operation

Target demand — AHREs Demand supply (10⁶m³) 0 0 0 01 0 01 Demand supply (10⁶m³) 100 80 60 40 20 0 +++ 20132012.10 0 2022 2022 201 2022,2022,01 2023.04.3.01 2018.01 2019.04 2018-01 2018.04 2016-01 7016.04 2016-07 2016.10 TOTTOT 2017.04 2017.01 2017.10 2018.10 2019.01 2020.01 2021.01 2021.04 2021.07 2022.10 2023.01 020.020.010.01.00 2023.10 Time (YYYY-MM) Time (YYYY-MM) **Training period (2016 ~ 2019) Testing period (2020 ~ 2023)**

Demand Supply

AHREs have a 95% demand satisfaction rate

Optimization of Parallel Reservoir Operation

Downstream flow

The total ecological flow satisfaction rate was approximately 87.5%

 \rightarrow The ecological flow was supplied in a stable

SWAT Model – Ecological Flow

Flow duration curve (FDC) shifting method

Objective functions

Fitness value F(t) = [DDV + EDV, DDV + MED] Demand Deficit Volume (DDV) Ecological Deficit Volume (EDV) Maximun Ecological Deficit (MED)

> If F(t) is Minimum?

> > END

Determine Pareto Optimal Monthly Hedging Rules

Optimization Algorithm Updating Monthly Hedging Rules **Aggregation Model** Updating Monthly Hedging Rules **Aggregation Model** Aggregating individual reservoirs into a virtual reservoir Aggregating individual reservoirs into a virtual reservoir $WA_t^* = \sum_{n,t}^{n} V_{n,t} + \sum_{n,t}^{n} I_{n,t}$ $WA_t^* = \sum_{n=1}^{N} V_{n,t} + \sum_{n=1}^{N} I_{n,t}$ Determining R^{*}_t through Improved Hedging Rule Decomposition Model Allocating R^{*} to Individual Reservoirs t = t+1Objective function $= \sum_{t=1}^{t} std(\frac{S_{1,t+1}}{C_1}, \frac{S_{2,t+1}}{C_2}, \frac{S_{3,t+1}}{C_3})$ Determining R_t^* through Improved Hedging Rule min f Optimal R1.t, R2.t, ..., Rn.t Yes t < 1 **Evaluating Decision Variable using Objective Functions**

- ➔ Aggregating individual reservoirs
- ➔ Determining total release of Aggregated reservoir using hedging rule with initial hedging rule parameters

is selected

Calculate the Objective function of outer optimization

Objective function : minimize the water demand & ecological flow deficit

→ Repeating the total process until the optimal hedging parameters

Evaluation of the Operation Performance

Comparison with existing methods

- → Comparison with standard operating policy (SOP) and transformed hedging rule (THR)
- → Performance evaluation of the proposed method

Testing the practical applicability of optimal operation rules

- → Testing the operation rules to check the ability to respond to uncertainties such as inflows
- → Applying the rules without knowing the input variables during the testing period (2020-2023)

Evaluation of the Operation Performance

- AHRE demonstrated the most stable and consistent operation.
- THR frequent exceed the normal pool level indicate less effective water use.
- During the testing period, the same stable pattern appeared.

Water level of each reservoir