

Improving the simulation of groundwater flow in the Escabas catchment (Spain)

Alejandro Sánchez Gómez¹, Christoph Schürz², Eugenio Molina Navarro¹, José Manuel Rodríguez Castellanos¹, Katrin Bieger³

¹Department of Geology, Geography and Environment, University of Alcalá (UAH), Spain

²Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research (UFZ), Germany

³Department of Ecoscience, Aarhus University, Denmark

SWAT Conference 2023 Aarhus, Denmark

Index

Introduction

Groundwater resources

Groundwater modelling with SWAT/SWAT+

Study area

Objetives

Methodology

Model setup

Model calibration

Approach 1: Hard calibration

Approach 2: Soft calibration

Parameters effect on groundwater simulation

Hard calibration

Final adjustments and further work

Introduction. Groundwater resources

Groundwater \rightarrow

Accounts for approximately **99% of liquid freshwater**.

Annual withdrawal \rightarrow 959 km³ (69% agriculture, 22% Domestic, 9% Industry).

Around 50% of the human consumption supply (100% in Denmark)

United Nations, The United Nation Groundwater: Making th ALSO A THREATENED RESOURCE

- Overexploitation
- Agricultural and livestock pollution

Groundwater \rightarrow Key resource, espec

- Climate change
- Slow response to precipitation → Maintains the streamflow during dry periods.
- Huge impact on water quality and ecosystems.
- In Spain → Strategic resource for human consumption (reserved for drought periods, but main source in remote locations).

Introduction. Groundwater modelling with SWAT/SWAT+

Pointed out as one of the model weaknesses.

SWAT+ \rightarrow

- SWAT \rightarrow Lumped model: One single shallow aquifer. ٠
- **Deep aquifer** Recharge 1 shallow aquifor por subbasin Coupling SWAT/SWAT+ with groundwater models (MODFLOW, GWFLOW) is also an option, but, efined

can we do it just with SWAT+?

	S	oil						
Shallow aquifer	Shallow aquifer	Shallow aquifer	Shallov aquife					
Deep aquifer								

Soil evaporation

Revap

Soil

Shallow aquifer

Percolation

Recharge

Groundwater flow

Study area. The Escabas Catchment

- Located in the east of the Tagus River basin, tributary of the Guadiela River.
- Small (330 km²) and undisturbed basin: Low population, no reservoirs or relevant withdrawals.
- Mean precipitation ≈ 850 mm, Mean temperature ≈ 10.2°C (1951-2019), streamflow data from 1972.
- Baseflow maintained during the year.

Ideal study case to work on groundwater modelling assessment

Study area. The Escabas Catchment

- Baseflow in this cacthment \rightarrow Groundwater.
- Aquifer materials with high permeability → More than 75% of the catchment → Carbonate materials.

- Flat areas over these permeable materials favours recharge.
- Natural vegetation is the main land cover (95% of the catchment).

Objectives

- Simulate in a realistic way the streamflow and its components in a aquifer dominated catchment, focusing on the groundwater flow.
- Understand the effect of different parameters on the groundwater simulation in SWAT+.
- Compare two different calibration approaches.

Model setup

As simple as posible:

- 1 subbasin
- No floodplain/upslope LSUs
- No HRUs simplification → Possible coupling with other groundwater model
- 11 channels/LSUs, 364 HRUs
- Time for running 10 years (+5 warm-up) \rightarrow 40 seconds

Initial aquifers configuration

- Deep aquifer removed (only 1 aquifer).
- rchrg_deep and revap_min parameters adjusted to 0 → Groundwater flow is the only possible way out of the aquifer.

Туре	Area (%)	Landuse	Area (%)
		frse	52.8
		frst	20.7
Natural	00.7	frsd	1.5
vegetation	90.7	migs	12.9
		past	2.5
		rngb	0.3
A grievity real		agrl	4.0
Agricultural	7.9	oliv	0.1
lanus		crgr	3.9
Lirban		urmd	0.1
Orban	0.4	urhd	0.3
Barren	1	bsvg	1.0

ID	Soil	Area (%)
HWSD9700	Rendzic Leptosols	90.8
HWSD9703	Calcaric Cambisols	9.1
HWSD9707	Calcaric Cambisols	0.1

Slope band	Area (%)
<= 8	14.8
8 - 30	40.0
>= 30	45.3

Model calibration

- Calibration period \rightarrow 2010-2018
- Performed with SWATplusR

Approach 1.

• 3 iterations 1000 simulations, parameters constrain focusing on streamflow simulation performance.

Approach 2:

- 4 iterations 1000 simulations, parameters constrain focusing on runoff coefficient and groundwater contribution.
- Evaluation of parameters effect on groundwater flow simulation.
- Hard calibration: 3 iterations 1000 simulations, parameters constrain focusing on streamflow simulation performance.

Parameter	Change	Minimum	Maximum
esco.hru	absval	0.00	1.00
epco.hru	absval	0.00	1.00
cn2.hru	pctchg	-30.00	30.00
latq_co.hru	absval	0.00	1.00
perco.hru	absval	0.00	1.00
cn3_swf.hru	pctchg	-30.00	30.00
awc.sol	pctchg	-60.00	60.00
z.sol	pctchg	-50.00	50.00
k.sol	pctchg	-80.00	200.00
bd.sol	pctchg	-30.00	30.00
ovn.hru	pctchg	-30.00	30.00
lat_ttime.hru	absval	0.50	180.00
alpha.aqu	absval	0.00	1.00
flo_min.aqu	absval	0.00	9.99
sp_yld.aqu	absval	0.00	0.50
chn.rte	absval	0.00	0.20
surlag.bsn	absval	0.05	23.99

ASSESSMENT			
Ļ			
HARD	Maximum	Minimum	Š
CALIBRATION	1.00	0.00	
	1.00	0.00	
	30.00	-30.00	
	1.00	0.00	
	1.00	0.00	
	30.00	-30.00	
	60.00	-60.00	
	50.00	-50.00	
	200.00	-80.00	
	30.00	-30.00	

SOFT

CALIBRATION

PARAMETERS

Approach I. Hard calibration

- 3 iterations of 1000 simulations
- Parameters constrain based on statistical performance: NSE, R², PBIAS, RMSE.

Approach I. Hard calibration

After 3 rounds:

Most of the simulations understimated groundwater.

Best simulation \rightarrow Very good performance, but **no groundwater**

Runoff_coefficient Groundw	ater_contribution Run r	nse_cal_r2_cal_pbias_cal_rmse_cal	0.3-		
0.366	0.000 543	0.748 0.754 -0.8 1.863	0.0	0.2	
0.374	0.070 889				
0.375	0.099 616	How is groundw	later flow being		
0.376	0.078 605	simulated in these	e two simulations?	0.0	
0.363	0.000 868				
0.377	0.322 320	0.719 0.725 1.5 1.968	Runoff_coefficient Groundwater_contr	bution Run nse_cal	r2_cal pbias_cal rmse_cal

0.4-

Best filtered simulations (Groundwater > 0.5) \rightarrow Worse (but almost satisfactory) performance, groundwater contribution reasonable.

0.372	0.649	100	0.477	0.491	1.4	2.685
0.348	0.583	339	0.498	0.502	-5.5	2.629
0.374	0.577	111	0.460	0.460	0.5	2.728
0.383	0.512	441	0.467	0.470	3.6	2.709
0.374	0.505	786	0.449	0.449	0.8	2.756
0.367	0.593	304	0.447	0.448	-1.0	2.761

0.6

0.4

Groundwater_contribution

Runoff_coefficient

Approach I. Hard calibration

Approach II. Soft calibration

- To ensure that water balance was realistic
- 4 iterations of 1000 simulations
- Parameters constrain based on runoff coefficient and baseflow contribution

→ Previously estimated (Rc = 0.38, Bc = 0.54)

13:30 - 15:00 Session I2: Hydrology Mogens Zieler Stuen, Building 1422

13:30 - 13:50Alejandro Sánchez GómezSoft data collection for realistic hydrological modelling: a

Target values matched with round 4 →
Low variation in the 1000 simulations.

Approach II. Soft calibration

	run_ca	l runoff_rt	gr_cont	nse_ob	r2_ob	pbias_ob	rmse_ob
Selection of 1 simulation to assess parameters effect \rightarrow	run_24	0.370	0.576	0.381	0.451	0.6	2.919
Filter (runoff rate within 0.36 and 0.4, baseflow contribution 0.5 and 0.6) \rightarrow Ordered by streamflow performance.	on run_20	8 0.364	0.516	0.380	0.451	-0.7	2.922
within 0.5 and 0.67 7 Ordered by streamlow performan	run_64	6 0.371	0.550	0.375	0.436	0.4	2.934
	run_97	3 0.363	0.530	0.372	0.440	-1.0	2.941
Groundwater simulation sligthly better than in	run 66	4 0.368	0.537	0.366	0.430	-0.1	2.954
			0 507	0.372	0.444	-1.3	2.942
One at a time S	nsitivity anaylisis	(OAT)					

Approach II. Parameters assessment

Approach II. Parameters assessment

Very small variations of alpha → Huge impact on baseflow simulation

using a suitable value.

•

•

Range of variation recommended after noticing this \rightarrow Depends ٠ on the basin, but $\approx 0 - 0.02$

Approach II. Hard calibration

From the parameters obtained on the Soft calibration:

- The other parameters were included.
- alpha range of variation was changed to 0.004 0.005.
- Three iterations of 1000 simulations, parameters constrain considering streamflow simulation. Runoff coefficient and groundwater contribution were checked in these iterations.

	esco	epco	cn2	latq_co	cn3_swf	perco	awc	z	k	bd	alpha	flo_min	sp_yld	ovn	lat_ttime	surlag	chn
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>										
1	0.278	0.801	6.41	0.177	7.94	0.844	8.71	-3.51	14.6	-24.5	0.004 <u>30</u>	6.34	0.316	6.19	4.92	1.17	0.178

Final adjustment and further work

- Changing latq_co and cn2 to obtain more surface runoff.
- latq_co \rightarrow 0.05, cn2 \rightarrow 20
- Sim. 33 → NSE = 0.56, R² = 0.61, PBIAS = 3.5

Further work → Repeat the process, since **the soft calibration was very restrictive** for surface runoff generation, for example. Repeat the experiment in a more complex model (with landscape units, with revap, etc).

Results and conclusions

- The groundwater flow simulation in SWAT+ has been comprehensively analysed.
- A realistic simulation for this variable has been achieved through the analysis of the parameters on it.
- Some key guidelines for reaching a realistic simulation have been established: a soft calibration process to ensure runoff coefficient and baseflow contribution are realistic, and a suitable range of variation for alpha parameter.
- Modellers should piroritize a realisitc simulation of different variables rather than just performance metrics.

Thanks for your attention!

alejandro.sanchezg@uah.es

	Soil		
Upla	ind aquifer Recha	Floodplain rge aquifer	Groundwater flow
Recha	arge Deep aquife	r Recharge	

Soil									
Shallow aquifer	Shallow aquifer	Shallow aquifer	Shallow aquifer						
Deep aquifer									