Runoff simulation in a glacier dominated watershed using semi distributed hydrological model

Kazi Rahman University of Geneva, Switzerland kazi.rahman@unige.ch

International SWAT conference, June 2011 Toledo Spain

TABLE OF CONTENT

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

Introduction

- Background of the research
- Research Questions

Study area

• Highlights of study area

Methodology

- Data used and sources
- First simulation
- Process comparison
- Hydrograph separation
- Year studied

Results

- Calibration period
- Validation period

Discussion

• Result comparison

Conclusion

- Key findings
- Next steps

RESEARCH BACKGROUND

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

40 % of stream runoff is coming from snow and glacier melt in the Rhone valley [Huss el al. 2009]

In Switzerland, 84 out of 85 glaciers under observation became shorter [WGMS, 2008]

55 % of Swiss energy from Hydropower. [Schleiss et al. 2007]

Alarming negative mass balance trend observed in the Rhone Glacier [Funk et al 2008]

Assessing climate change impact on quantity and quality of water [www.acqwa.ch]

RESEARCH QUESTIONS

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

How well hydrological models (SWAT-RS 3.0) are capable simulating runoff in Upper Rhone River

Taking into account

- Glacier
- Orographic Precipitation
- Snow melt

Long term forecast for water status for glacier dominated Upper Rhone watershed

Taking into account

- Climate change scenarios(IPCC, Ensemble/Prudance)
- Energy driven scenarios
- Land use scenarios (EnviroGRID)

STUDY AREA HIGHLIGHTS

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

Watershed area: 39.60 km²

Elevation:

min 1758 m

max 3617 m

Land use:

Glacier (48%)

Solid rocks (14%)

STUDY AREA HIGHLIGHTS

Introduction

Study area

Methodology

Results

Discussion

Conclusion

DATA USED AND SOURCES

Introduction
Study area
Methodology
Results
Discussion
Conclusion
Acknowledgement

Data type	Data Source
Digital Elevation Model (DEM)	Swiss-topo (grid cell: 25 m · 25 m) www.swisstopo.ch
Land use	FOEN (grid cell: 100 m · 100 m) http://www.bfs.admin.ch
Soil type	FOEN (grid cell: 100 m · 100 m) http://www.bfs.admin.ch
River & channel network	FOEN (grid cell: 100 m · 100 m) http://www.bfs.admin.ch
Hydrometeorlogic data	MeteoSwiss http://www.meteosuisse.admin.ch
River flows	FOEN, Switzerland http://www.hydrodaten.admin.ch

3 Sub basin 25 HRU

YEAR OF STUDY

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

• Model Interface: ArcSWAT 2009

• Total year of study: 1997-2009

• Warm up Period: 1997-2000

• Calibration Period: 2001-2006

• Validation Period: 2007-2009

• Time step: Monthly Average

Daily Average

Model evaluation: Visually (graph fitting)

Statistically

FIRST SIMULATION

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Time lag of rising limb Systematic underestimation Sharp dropdown of recession limb Secondary peaks

MODELING CONCEPT..RS 3.0

[Jordan et al, 2007]

Introduction

Study area

Methodology

Results

Discussion

Conclusion

HYDROLOGICAL PROCESS...

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Process	SWAT	RS 3.0
	(i) Curve Number (CN)	Kinemtic wave over a inclined
Surface runoff	(ii) Green and Ampt approach	plan (SWMM)
	(i) Priestley-Taylor	
	: (ii) Penman-Monteith	Turc method
Evapotranspiration	: (iii) Hargreaves	
	(i) Variable storage coefficient	Kinematic wave
Flow routing	(ii) Muskingum approach	St-Venant dynamic wave
	Temperature Index	
Snow melt	Temperature Index with Elevation	Enhanced Temperature Index with
	Energy budget based SNOW 17	2 reservoirs
Glacier Melt	?	Enhanced Temperature Index
	•	:

FIRST IMPROVEMENT

Introduction
Study area
Methodology
Results
Discussion
Conclusion
Acknowledgement

Time lag of rising limb no longer exists Summer overestimation, Winter underestimation Secondary peaks

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

- Tracers are conservative (no chemical reactions);
- All components have significantly different concentrations for at least one tracer;
- Tracer concentrations in all components are temporally constant or their variations are known;
- Tracer concentrations in all components are spatially constant or treated as different components;

Liu et al. (2008)

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

3 component mixing model

• Two Conservative Tracers

Simultaneous Equations

$$f_1 + f_2 + f_3 = 1$$

$$C_1^1 f_1 + C_2^1 f_2 + C_3^1 f_3 = C_t^1$$

$$C_1^2 f_1 + C_2^2 f_2 + C_3^2 f_3 = C_t^2$$

Solutions

$$f_{1} = \frac{(C_{t}^{1} - C_{3}^{1})(C_{2}^{2} - C_{3}^{2}) - (C_{2}^{1} - C_{3}^{1})(C_{t}^{2} - C_{3}^{2})}{(C_{1}^{1} - C_{3}^{1})(C_{2}^{2} - C_{3}^{2}) - (C_{2}^{1} - C_{3}^{1})(C_{1}^{2} - C_{3}^{2})}$$

$$f_{2} = \frac{C_{t}^{1} - C_{3}^{1}}{C_{2}^{1} - C_{3}^{1}} - \frac{C_{1}^{1} - C_{3}^{1}}{C_{2}^{1} - C_{3}^{1}} f_{1}$$

$$f_{3} = 1 - f_{1} - f_{2}$$

f - Discharge FractionC - Tracer ConcentrationSubscripts - # ComponentsSuperscripts - # Tracers

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

Co-relation matrix formation

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

Principal component analysis

94 percent variability can be explained though first 2 axis

Introduction

Study area

Methodology

Results

Discussion

Conclusion

PCA Matlab	PCA R (ade4)	PCA R (prcomp)
<pre>[COEFF,SCORE] = princomp(X) [COEFF,SCORE,latent] = princomp(X) [COEFF,SCORE,latent,tsquare] = princomp(X) [] = princomp(X,'econ')</pre>	data2<-read.table("data2.txt",header=T) attach(data2) names(data2) pca_data2<-dudi.pca(data2,scannf=T) pca_data2 pca_data2\$li pca_data2\$co s.corcircle(pca_data2\$co) par(mfrow=c(2,2)) s.corcircle(pca_data2\$co) pca_data2\$eig	data2<-read.table("data2.txt",header=T) attach(data2) names(data2) prcomp(data2) summary(prcomp(data2, scale = TRUE))

Introduction

Study area

Methodology

Results

Discussion

Conclusion

OPTIMIZED PARAMATERS.

	<u> </u>			
Introduction	Parameter	Description	Range	Optimized value
Study area	SFTMP	Snowfall temperature [°C]	-5,+5	1.221
Methodology	SNOEB	Initial snow water content [mm]	0, 300	150
Results	SMTMP	Snow melt base temperature [°C]	-5,+5	2.823
Discussion	TIMP	Snow pack temperature lag factor [–]	0, 1	0.032
Conclusion	SMFMN	Melt factor for snow on December 21st [mm H ₂ O/°C day]	0, 10	4.825
Acknowledgement	SMFMX	Melt factor for snow on June 21st [mm H ₂ O/°C day]	0, 10	3.319
Tienne wiedgemene		Minimum snow water content that corresponds to		
	SNOCOVM	X 100% snow cover [mm]	0,500	300
			· · · · · · · · · · · · · · · · · · ·	

FINAL CALIBRATION

Introduction
Study area
Methodology

Results

Discussion

Conclusion

Acknowledgement

SWAT Output NS 77

RS 3.0 NS 93

VALIDATION

Introduction Study area

Methodology

Results

Discussion

Conclusion

PERFORMANCE EVALUATION

Moriasi, D.N. et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the Asabe, 50(3): 885-900.

[NSE > 0.5, RSR \leq 0.70, PBIAS = \pm 25%]

Introduction
Study area
Methodology
Results
Discussion
Conclusion
Acknowledgement

Criteria	Equation	SWAT	RS 3.0
NSE	$NSE = 1 - \left[\frac{\sum_{i=1}^{n} (X_{i}^{obs} - X_{i}^{sim})^{2}}{\sum_{i=1}^{n} (X_{i}^{obs} - X_{i}^{mean})^{2}} \right]$	77	93
PBIAS	$PBIAS = \left[\frac{\sum_{i=1}^{n} (X_i^{obs} - X_i^{sim}) \times 100}{\sum_{i=0}^{n} (X_i^{obs})} \right]$	5.43	5.26
RSR	$SR = \frac{RMSE}{STDEV_{obs}} = \left[\frac{\sqrt{\sum_{i=1}^{n} (X_i^{obs} - X_i^{sim})^2}}{\sqrt{\sum_{i=1}^{n} (X_i^{obs} - X_i^{mean})^2}} \right]$	0.46	0.41

Where X_i^{obs} = observed variable (flow in m^3s^{-1})

 X_i^{sim} is the simulated variable (flow in m^3s^{-1})

 X_i^{mean} is the mean of n values and n is the number of observations

RESEARCH FINDINGS

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

Key Findings..

- Model generated runoff has close match with measured runoff [NSE varies between 77 (daily) to 84 (monthly)]
- Glacier can be treated as reservoir and the outflow can be routed through reservoir
- Application of Elevation band has significant impact on snow/glacier melt process [Efficiency varies based on number of elevation band selection]
- Sensitive parameters are mostly related to snow/glacier melt process [SMTMP, SMFMN SMFMX..]

NEXT STEPS...

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

Extend the calibration for entire Rhone
Link with species community
Sub daily calibration (Hydropower optimization)
Climate change scenario implementation (Prudence)
Land use change scenario implementation (enviroGRIDS)

QUENSTIONS & ANSWERS..

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

- 1. was there any point source? if so what were they? how did you get the point source data? was it daily or monthly?
- 2. what were the final calibration parameter? I see the sensitivity list?
- 3. was it using auto calibration? if so what are the uncertainty?
- 4. how does rock parameters help in final calibration..
- 5. how was the glacier area was estimated?
- 6. did you implement elevation bands? also permanent snow depths?

hope some of these questions help to make your presentation better.

LIMITATIONS

Introduction

Study area

Methodology

Results

Discussion

Conclusion

- 1. Availability of spatial extents and thickness
- 2. Hydrograph separation for one melt season
- 3. Expensive equipment's

Acknowledgements...

Introduction

Study area

Methodology

Results

Discussion

Conclusion

Acknowledgement

Institute for Environmental Sciences University of Geneva

Main promoter

Dr. Anthony Lehmann University of Geneva

Co promoters

Dr. Emmanuel Castella University of Geneva Dr. Karim Abbaspour EAWAG, Switzerland

Resource persons

Dr. Fred Jordan Edric. Switzerland Dr. Stéphane Goyette University of Geneva Dr. Chetan Maringanti University of Geneva

Overall Support

Prof. Martin Beniston Director, ISE. UNIGE

QUENSTIONS & ANSWERS...

Introduction

Study area

Methodology

Results

Discussion

Conclusion

