

Protocol for Calibration of River Basins using SWAT

N.Kannan

Co authors:

M. White, C. Santhi, X. Wang, J.G. Arnold, and

M. Di Luzio

Improving Life through Science and Technology.

The Context

- Insufficient guidelines for calibration of river basins
- Challenges-Lack of data, poor data quality
- General guidelines
- Ongoing national assessment study using SWAT-CEAP
- Lessons learned from calibration
- Applicable for other models, other countries

1. Study the river basin

Upper Tennessee

Land Cover

Forest 67 % Pasture 26 % Cultivated 2.5 % Developed 4.5 % (2.5 million people)

Elevation

621-6,684 feet

Precipitation: 1300 mm

Lower Tennessee

Land Cover

Elevation

Forest 55 % Pasture+row crops 41 % Urban 1 % 300-2900 ft

Precipitation: 1380 mm

2. Identify key drivers of flow and pollutant transport

- Very High slope
- High precipitation
- Dams
- Dominant Land cover-Forest
- High surface runoff
- High water yield
- High Soil Erosion
- Deposition of pollutants in dams

3. Select adequate number of suitable monitoring stations

- 1. Drainage pattern
- 2. Data availability
- 3. Number of observations
- 4. Area covered

- 5. Nearness to reach outlets
- 6. Location: major/minor river
- 7. Continued availability of data

4. Identify anomalies in monitoring data

5. Estimate uncertainties in observations

1	Average annual NO3+NO2 loads (tons)						
2							
3			Observations				
1							
5	Place	Reach	Observed	Low Conf	Upper Conf		
5							
7	Tennessee river-near Paducah, KY	6040006	22,572	15,004	32,872		
3						_	
)						_	
0		Average annual TKN loads (tons)					
1							
2			Observations				
3							
4	Place	Reach	Observed	Low Conf	Upper Conf		
5							
6	Tennessee river-near Paducah, KY	6040006	19,331	14,852	24,868		
7							
8							
9	Average annual NH3 loads (tons)						
0							
1			Observations				
2							
3	Place	Reach	Observed	Low Conf	Upper Conf		
4							
5	Tennessee river-near Paducah, KY	6040006	2,625	1,521	4,353		
-							

Load Runner

- Estimate load as a function of discharge
- Input: Water quality data, daily flow
- Daily, monthly and annual fluxes
- Estimates uncertainty

More details:

http://environment.yale.edu/loadrunner/ http://water.usgs.gov/software/loadest/

6. Prepare model setup and check input

- As many years of data for warm-up
- Many years of data for calibration (including wet, dry average rainfall periods)
- Some years of data for validation
- Recent changes in code/model set up are working
- Copy of model setup (backup !!)
- Precipitation–compare literature values with model input (e.g. annual total)
- Temperature–compare literature values with model input (e.g. monthly mean)
- Crop rotation
- Mean rates and timing of fertilizer, manure application
- Quantity, frequency and timing of irrigation
- Land management operations
- Point source discharges
- Atmospheric nitrogen deposition
- Dams

7. Check overall water balance and pollutant budget

- Average annual water balance (Relate ET, surface runoff, base flow, and water yield to precipitation)
- Check reservoir water balance is meaningful (especially ET and seepage)
- Make sure irrigation applied is accounted in water balance
- Make sure soil erosion rates are reasonable
- Check nutrient budget

8. Check relative contribution from sub-basins

10.0

3.3

1,323

1,386

9. Check relative contribution from different land parcels

	PREC mm	SURQ mm	GWQ mm	ET mm	WYLD mm
FRST	1,372.8	319.3	265.3	815.0	584.6
ORCD	1,372.3	344.5	132.8	937.9	477.3
URBN	1,372.8	394.5	302.8	676.4	697.3

	mm	mm	mm	t/na
BARN	1,104.2	487.5	576.6	4.4
URBN	1,112.4	632.8	646.7	1.0
WETN	1,104.1	630.7	442.3	0.1

10. Check flow and pollutant transport pathways

MEAN	Sur Q mm	GWQ mm	Wyld mm
Observed	336	314	650
Predicted	332	199	530

11. Design a calibration strategy

12. Keep achievable goals for calibration

Annual Flow (Sub-basins)

- Match means within 20 % of observations (10 % for surface runoff and base flow)
- Minimize number of sub-basins not meeting above criteria

Annual and Monthly-Flow (River reaches)

•Match predicted means within 15 % of observations

- •Match predicted and observed standard deviations as much as possible
- •Try for Nash and Sutcliffe efficiency > 0.5 (> 0.6 preferred)
- •Try for R^2 values > 0.6 (0.75 preferred)

Annual pollutant loads (River reaches)

•Bring predicted pollutant loads within the lower and upper confidence limits of observations

•If confidence limits are not available allow 30 % limit for sediment and 40 % limit for nutrients and 50 % for pesticide

Mean annual water yield for sub-basins in Tennessee river basin

Concluding remarks

DO

- •Understand the river basin-identify key drivers of flow and pollutant transport
- •Customize a calibration plan for different regions of river basin

DO NOT

- •calibrate without checking the quality of input and quality of un-calibrated model results
- •Try to compensate for data problems by parameterization

