

Federal Ministry of Education and Research

Application of SWAT to a data scarce catchment in the Three Gorges Region, China

K. Bieger, G. Hörmann, N. Fohrer 2011 International SWAT Conference, Toledo, Spain 16 June 2011

Outline

1. Introduction

2. SWAT model application
2.1 Input data and model setup
2.2 Calibration of discharge
2.3 Simulation of sediment transport

3. Conclusions and outlook

Introduction

Construction of the Three Gorges Dam

Foto: D. Ehret 2010

Foto S. Schönbrodt 2010

Project collaboration

YANGTZE-Project:

land use change, erosion, mass movement, diffuse inputs

Coordination: Research Centre Jülich

Remote Sensing Potsdam	Land use change _{Giessen}	Erosion Tübingen	Landslides Erlangen	Diffuse sediment and P inputs _{Kiel}
Assessment of mass move- ments using remote sensing techniques	Classification of land use and assessment of vulnerability	Assessment and analysis of soil erosion	Assessment and analysis of landslides	Analysis of sediment and phosphorus inputs to rivers using SWAT

Aim:

Analysis of land use change and vulnerability, risk assessment of mass movements, soil erosion and diffuse inputs to rivers

Study area: Xiangxi Catchment

- Catchment area: 3200 km²
- Length of Xiangxi River:
 94 km
- Mean annual temperature: 16,9° C
- Mean annual precipitation: 1000 mm
- Discharge at Gauge Xingshan: 36,4 m³/s

Seasonality of discharge

Xiangxi River from source to mouth

Model setup: input data

Availability of time series for calibration

Calibration of daily discharge

Water balance

Division of precipitation into Proportions of different flow components: ET and water yield:

Auto- and cross correlations

Sediment transport

Spatially distributed sediment sampling

Xiangxi River: 22 and 25 July 2010 → Contrasting flow conditions

Sediment concentrations July 2010

Sediment yield of different land use classes

Reasons for overestimation of sediment yield

- Vegetation cover on agricultural areas (crop growth or USLE C Factor)
- Erodibility of soils (USLE K Factor)
- Peak rate adjustment factor for sediment routing
- Terraces not yet implemented in the model

Conclusions and outlook

- Average error for discharge very low
- Statistical criteria satisfactory
- Proportions of different flow components have to be revised
- Reduction of sediment yield from agricultural areas
- Reduction of recession time of sediment transport peaks

- Simulation of phosphorus transport
- Development of land use scenarios

Thanks for your attention!

Contact: kbieger@hydrology.uni-kiel.de +49 431 8801238