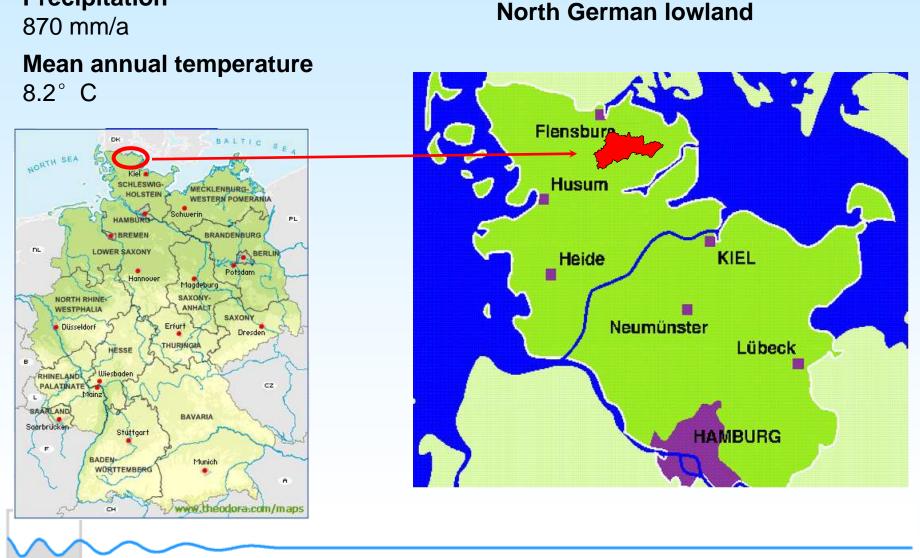
C A U Christian-Albrechts-Universität zu Kiel Institute for the Conservation of Natural Resources


Effect of best management practices on water quality in a lowland catchment

Britta Schmalz, Quang Dung Lam, Nicola Fohrer

Department of Hydrology and Water Resources Management

Research area – Kielstau catchment

Precipitation

Department of Hydrology and Water Resources Management, CAU Kiel - B. Schmalz et al. -2-

Research area – Kielstau catchment

Area: 50 km² River length: 17 km Max. elevation: 79.9 m 2 main tributaries Rural area Population: 4.500 people **UNESCO Demosite (IHP** Ecohydrology Program)

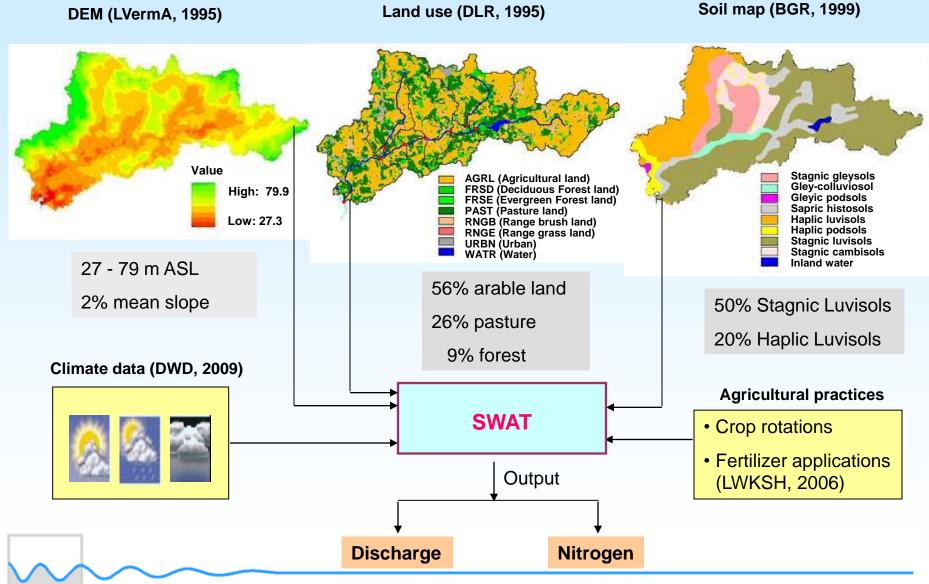
Department of Hydrology and Water Resources Management, CAU Kiel - B. Schmalz et al. -3-

Environmental problems in the Kielstau catchment

Problems

- High nutrient concentrations
- Eutrophication

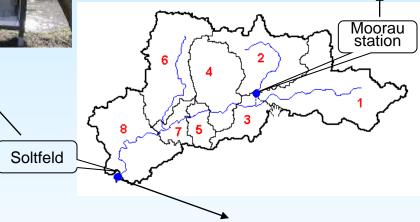
Pollution sources


- Agricultural non-point sources pollution
- Wastewater treatment plants (WWTPs)

Objectives

- 1. to evaluate the long-term impact of point and diffuse source pollution on nutrient loads in lowland catchments using the SWAT model
- to identify the impacts of different land use management scenarios on diffuse source nutrients as well as to select appropriate management scenarios based on the trade-off relationship between the costeffectiveness of Best Management Practices (BMPs)
- 3. to identify crucial areas which provide great nutrient loads based on the spatial distribution maps of nutrient loads

Input / output data for Kielstau catchment



Department of Hydrology and Water Resources Management, CAU Kiel - B. Schmalz et al. -6-

Measured data and model setup

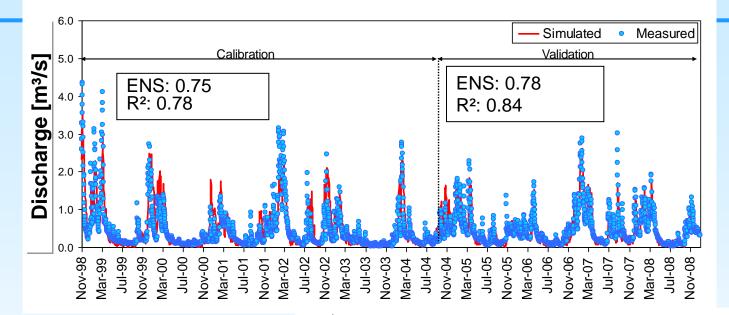
Measured data Moorau

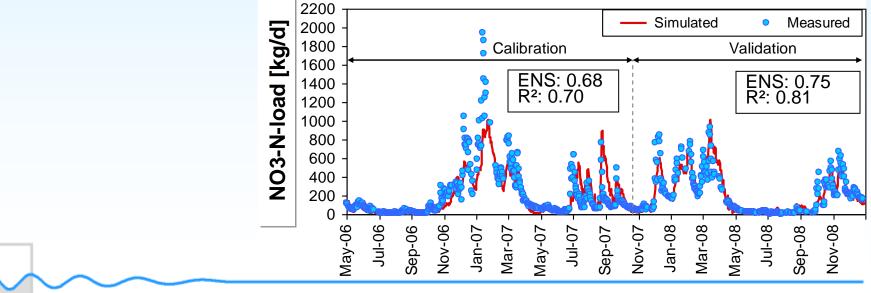
- Discharge: Jul. 2007 Jun. 2009
 - Water quality: Nov. 2007 Mar. 2009 (CAU Kiel)

Measured data Kielstau

- Discharge: 1998-2008 (StUa Schleswig, 2009)
 - Water quality: 2006-2008 (CAU Kiel)

Depa	rtment	of Hydrology	and Water	Resources	Management,	CAU Kiel - E	3. Schmalz et al.	-7-


- SWAT version 2005
- 8 subbasins
- 154 HRUs
- Measured water quality parameters:
 - -Susp. Sediment -NO3-N, NH4-N, TN -PO4-P, TP


Consti- tuent	Calibration	Validation	
Discharge	1998 - 2004 (Auto-calibration)	2004 - 2008	<
Sediment	Oct. 2006 – Oct. 2007	Nov. 2007 – Dec. 2008	
Nutrients	May 2006 – Oct. 2007	Nov. 2007 – Dec. 2008	

Baseline model

 SWAT performed satisfactorily in simulating daily flow, sediment and nutrient loads at the outlets of the Kielstau and Moorau catchment.

Discharge and nitrate load, Kielstau

Department of Hydrology and Water Resources Management, CAU Kiel - B. Schmalz et al. -9-

Baseline model: I Flow

- ✓ Groundwater parameters are found to be most sensitive and they turned out to be the most influential factors on water discharge.
- ✓ Groundwater is found to be the dominant flow component.

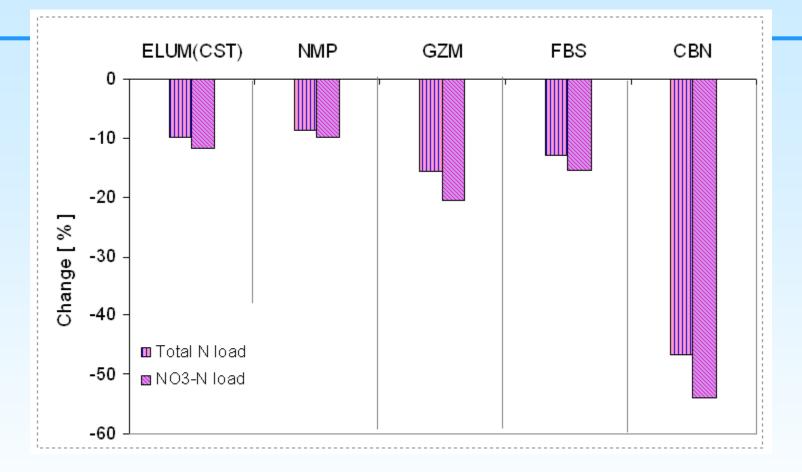
Baseline model: II Nutrients

- Groundwater parameters are found to be most sensitive and they turned out to be the most influential factors on water discharge.
- ✓ Groundwater is found to be the dominant flow component.
- Diffuse sources are the dominant entry pathways of nitrate in the whole catchment.
- Agriculture is found to be the dominant source of diffuse water pollution.
- Shallow groundwater flow was the major source of nitrate in the stream.

Comparison measured data and LAWA class II

Watershed	ershed Variable		Period	Mean value	WFD target value*
Kielstau	Average discharge	m³/s	01/1993 - 12/2008	0.43	-
	Average NO ₃ -N			4.48	2.5
	Average NH4-N	mg/l		0.15	0.3
	Average TN	mg/l	05/2006 -12/2008	5.81	3.0
	Average PO ₄ -P	mg/l		0.18	0.1
	Average TP	mg/l		0.23	0.15
Moorau	Average discharge	m³/s	07/2007 - 06/2009	0.09	-
	Average NO ₃ -N	mg/l		7.39	2.5
	Average NH4-N	mg/l	/l 11/2007 - 3/2009		0.3
	Average PO ₄ -P	mg/l		0.16	0.1

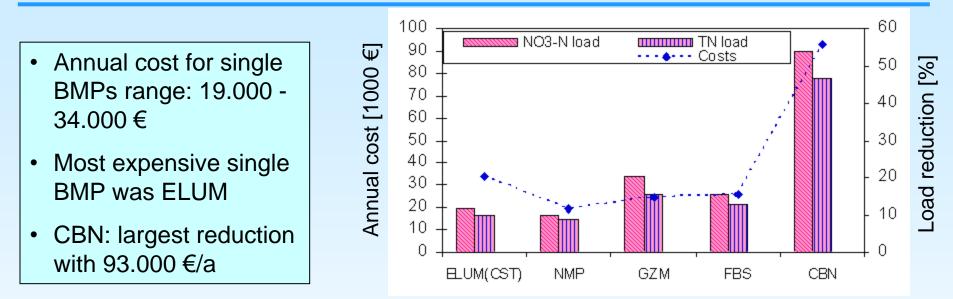
*WFD (2000), LAWA (1998), class II


nitrogen parameters, moderate to poor ecological status

 \Longrightarrow Nitrogen parameters need to be improved

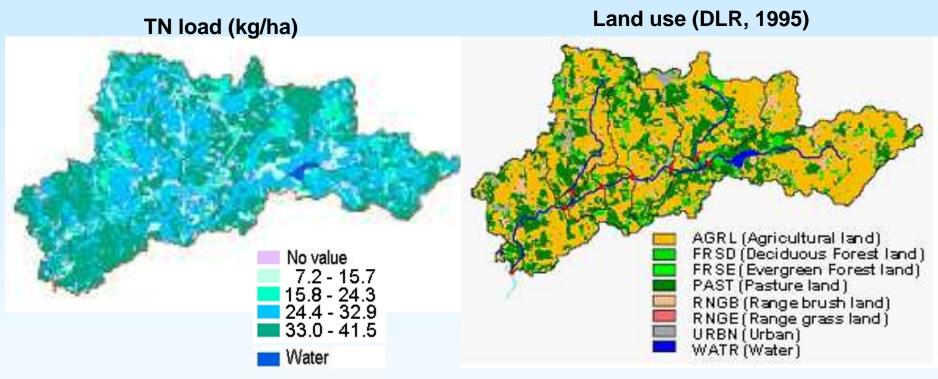
Implementation of BMPs on the lowland areas

Measure	Description	Code
Extensive land use management	Combination of different crop rotations and tillage (CST: conservation tillage and WRyRy rotation)	ELUM
Nutrient management plan	Reducing nutrient application (both mineral fertilizer and manure) in arable land by 20%	NMP
Grazing management practice	Reduction of livestock density from 2 to 1.1 LU/ha and no fertilizer application on pasture land	GZM
Field buffer strip	Application of 10 m field buffer strips on arable and pasture land. Field buffer strips are installed along the edge of main channel	
Combination scenarios	Combination of the 4 single scenarios	CBN


Impact of BMP implementation, Kielstau

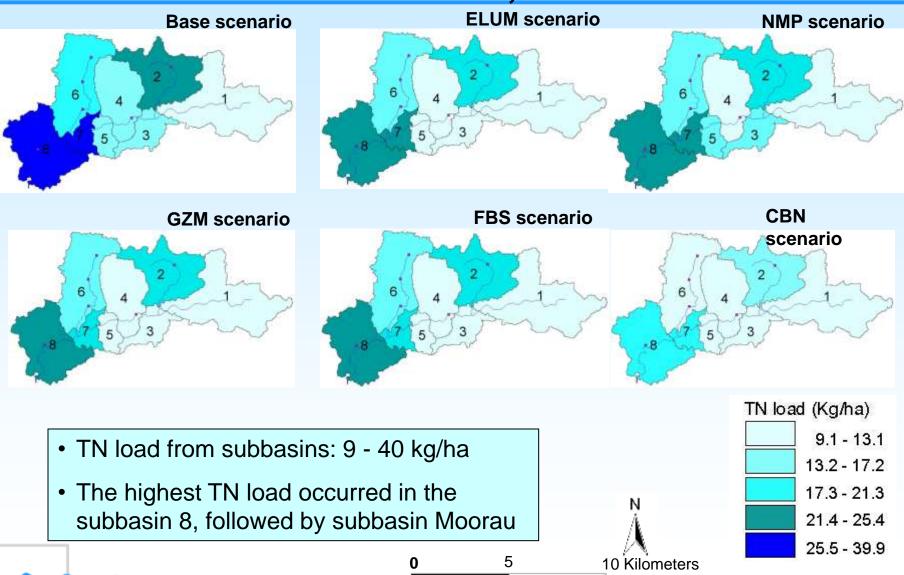
Load reduction	Parameters	Single BMP	Combined BMPs	
	NO3-N	9.9% – 20.5%	53.9%	
	TN	8.6% – 15.6%	46.7%	

Department of Hydrology and Water Resources Management, CAU Kiel - B. Schmalz et al. -14-

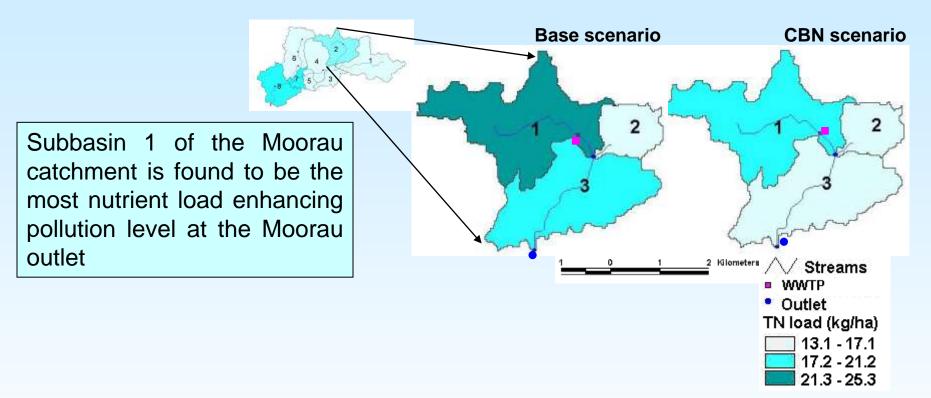

Costs and effectiveness of BMPs, Kielstau

BMPs	Life-time (year)	Unit	Annual cost
ELUM (Extensive land use management)	1	€/ha	17.83
NMP (Nutrient management plan)	3	€/ha	7.17
GZM (Grazing management practice)	25	€/ha	24.40
FBS (Field buffer strip)	25	€/100m	19.60

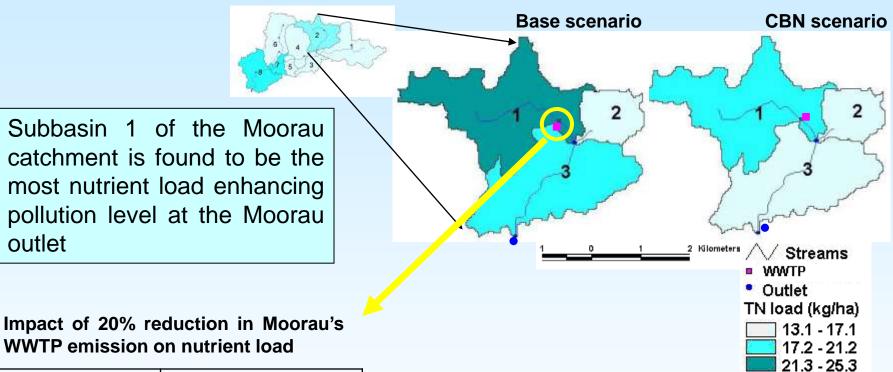
Department of Hydrology and Water Resources Management, CAU Kiel - B. Schmalz et al. -15-


Spatial distribution of TN loads and land use, Kielstau

- High TN loads are mostly originated from HRUs which are covered by arable land
- Forest land is found to be the lowest contributor to TN loads


Department of Hydrology and Water Resources Management, CAU Kiel - B. Schmalz et al. -16-

Impact of BMPs on spatial distribution of annual TN load, Kielstau



Department of Hydrology and Water Resources Management, CAU Kiel - B. Schmalz et al. -17-

Impact of BMPs on spatial distribution of annual TN load, Moorau

Impact of BMPs on spatial distribution of annual TN load, Moorau

Catchment	Reduction in TN load (%)	
Kielstau	1.7	
Moorau	7.6	

20% nitrogen reduction in WWTP of Moorau reduced considerably N load at the Moorau outlet and also improved water quality at the Kielstau catchment

Conclusions

The implementation of BMPs in the SWAT model shows significant effects on the water quality of the Kielstau catchment:

- ✓ Reduction only in one type of BMP did not obtain the water quality target value for EU-WFD.
- ✓ The combination of BMPs improved considerably the water quality, achieving a 54% and a 47% reduction in nitrate and total nitrogen load, respectively, with annual implementation costs of 93,000 Euro.
- Applying a spatially distributed modeling approach was an appropriate method to identify the crucial pollution areas within a watershed.

C A U Christian-Albrechts-Universität zu Kiel Institute for the Conservation of Natural Resources

Thanks for your abention

For further question

Email QD Lam: dlamquang@hydrology.unPklel.de

The study was funded by Vietnames

ernment and DAAD fellowship

Reference list

- LAM, Q.D., SCHMALZ, B. & FOHRER, N. (2011a): Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany. Submitted to Journal of Environmental Management
- LAM, Q.D., SCHMALZ, B. & FOHRER, N. (2011b): The impact of agricultural Best Management Practices on water quality in a North German lowland catchment. Environ Monit Assess. Published online March 2011.
- LAM, Q.D., SCHMALZ, B. & FOHRER, N. (2010): Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agric. Water Manage. 97: 317–325.
- LAM, Q.D., SCHMALZ, B. & FOHRER, N. (2009): Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany. Adv. Geosci. 21: 49-55.