Application and validation of SWAT model to an alpine catchment in the Central Spanish Pyrenees

> L. Palazón¹*, A. Navas¹ ¹Department of Soil and Water. Estación Experimental de Aula Dei (EEAD)-CSIC, Zaragoza, Spain *Email: Ipalazon@eead.csic.es

Introduction

Characteristics of the Spanish Pyrenees \rightarrow reservoirs

Rugged topography Regime of the rivers Changes in land use

soil erosion

siltation

reservoir management problems (Valero-Garcés et al. 1999; Navas et al. 2009).

Continuous direct measurements + spatial coverage ≠ Mountain ecosystems A robust computational hydrologic model

An effective means of studying land-surface dynamics

Snow-dominated mountain catchment → spatially distributed modeling
 •highly heterogeneous climate drivers
 •complex topography
 •environmental gradients

Precipitation and temperature lapse rates computed \rightarrow restrict the ability of the model

This study ightarrow

calibration and validation of a mountainous catchment

limit climatic data important snowmelt streamflow main dammed river

The drainage basin of the Barasona reservoir
Central Spanish Pyrenees

Barasona reservoir	Year	Capacity (hm ³)
Build	1932	71
Increased	1972	92
Today	2011	85

The Aragón and Cataluña canal \rightarrow 105,000 ha

Study Area

ISÁBENA

12

24

Heterogeneous topography and lithology \rightarrow 4 Pyrenees Structural Units (WNW–ESE trending)

- •Axial Pyrenees \rightarrow Paleozoic rocks and granodiorites with peaks above 3000 m.a.s.l.
- •Internal Ranges \rightarrow Cretaceous and Paleogene sediments with Internal Depressions (Eocene marls)
- •Intermediate Depression \rightarrow Miocene continental sediment
- •External Ranges \rightarrow Tertiary materials

(Valero-Garcés et al. 1999)

Geology

Topography

Rugged topography Altitudinal range of 3000 m: 424 m.a.s.l. → 3404 m.a.s.l. (Aneto Peak) Mean elevation of 1313 m Average catchment slope is 39 %

DEM

Aragón Territorial Information System (SITAR, 2010) Spatial resolution = 20 m

> Catchment configuration DEM + gauge stations

Climate

This is defined as mountain type, wet and cold

Temperature and precipitation gradients

500 mm and 12°C at the reservoir
> 2000 mm and < than 4°C above 2000 m.a.s.l.

0 °C isotherm → around 1650 m.a.s.l.

Climate input

daily max and min temperaturedaily rainfall

Rainfall stations	Elevation (m)	Temperature station	Elevation (m)
(9829) Mediano	483	(9829D) Trillo	597
(9853) Serraduy	905	(9828) Tierrantona	635
(9841) Sesue	943	(9756) Benabarre	734
(9840) Eriste	1078	(9851) Las Paules	1402

Governmental Meteorological Agency (AEMET Agencia Estatal de Meteorología)

Drainage network

Ésera River Isábena River

They have different hydrological characteristics

The hydrologic regime is transitional pluvial-nival

Floods:

late spring–early summer snow melt and heavy rains
summer thunderstorms
late autumn heavy rains

Hydrological data

3 gauge station Linsoles Reservoir → was configured in the model Ebro River Hydrographic Administration (CHE)

Hydrology

Characteristics:

stony and alkaline
overlying fractured bedrock
textures from loam to sandy loam
shallow (< 1 m)

Soil input data

Soil Map of Aragón (Machín J., awaiting publication) 19 types of soil: FAO (2007)

Harmonized World Soil Database (HWSD, 2008)

low organic matter contents (< 3-4 %)
well drained soils
limited average water contain
moderate to low structural stability.

Land use

Distribution of land uses

Northern areas → grassland
Central areas → forest
Southern areas → cultivated land

Land use input

European Project Corine Land Cover (1990) Resolution = 100 m 22 classifications

<u>> 50% Forest</u>

Land cover Type	Area (%)
Urban	0.1
Water	0.5
Range, grass	7.9
Bare rock, perennial ice and snow	8.5
Range, brush	11.2
Forest, deciduous	13.3
Forest, transitional and mixed	13.3
Agricultural Land	16.5
Forest, evergreen	28.6

SWAT2009 + ArcMAP (9.3)

Model Parameterization

10 elevations bands Precipitation lapse rates = 1000 mm/km Temperature lapse rates = -5 ° C/km

Snow-snowmelt final Parameterization

Parameter	Value
Snow fall temperature, SFTMP (°C)	2
Snowmelt temperature, SMTMP (ºC)	1.5
Maximum melt rate of snow during a year, SMFMX (mm/ ºC/ day)	3.5
Minimum melt rate of snow during a year, SMFMN (mm/ ºC/ day)	0.1
Snow pack temperature lag factor (TIMP)	0.1
Minimum snow water content at 100% snow cover, SNOCOVMX (mm)	200
Snow water equivalent at 50% snow cover, SNO50COV	0.1

SWAT model

Model Calibration and Validation

Model Evaluation

Two gauge stations \rightarrow Graus and Capella

Nash–Suttcliffe coefficient (ENS, Nash and Suttcliffe, 1970) Deviation in total volume (Dv, ASCE, 1993)

Model Calibration and Validation

SWAT-CUP + SUFI-2 + Nash-Sutcliffe efficiency (ENS) Capella gauge station

Periods

Calibration 1987-1991 Validation 1992-1996 The ability of the model to replicate temporal monthly trends

Parameter	Fitted Value
rCN2.mgt	0.08075
vALPHA_BF.gw	0.0215
vGW_DELAY.gw	25.32625
vCH_N2.rte	0.00885
vCH_K2.rte	2.61225
vALPHA_BNK.rte	0.60485
vSFTMP.bsn	1.33603
vSMTMP.bsn	4.3
vSMFMX.bsn	1.375
VSMFMN.bsn	0.375
VTIMP.bsn	0.09775
VSNOCOVMX.bsn	462.5
vSNO50COV.bsn	0.25475

Results and Discussion

\succ The error in the high flows \rightarrow uncertainties of the precipitation \rightarrow local thunderstorms

\succ Limited climatic data in altitude + inferred snow routine \rightarrow The rest of the error

	NS		Dv (%)	
	Graus	Capella	Graus	Capella
Initial	0.51	0.64	-0.68	-3.91
Calibration	0.40	0.65	0.11	0.41
Validation	-0.12	0.46	0.08	0.30

Conclusions

Rugged topography + Lack of meteorological data

 \rightarrow They are limitations for SWAT mountain simulation

Generation of snow, snowmelt and streamflow present some inconsistencies

It is necessary \rightarrow an improved definition of the climatic data for the catchment

The dammed characteristics of the Ésera River \rightarrow affects the simulation results

Detailed adjust of inflow-outflow in the Linsoles reservoir

It improved the calibration of the Ésera subcatchment

Thank you very much