

How to integrate wetland processes in river basin modeling?

A West African case study

stefan.liersch@pik-potsdam.de

fred.hattermann@pik-potsdam.de

June 2011

Outline

Why is an inundation module required?

• Case study: Inner Niger Delta

How does the inundation module work?

- Data requirements
- Preprocessing
- Processes
- Model parameters
- Limitations

Inner Niger Delta (Mali)

Upper Niger Basin ~350,000 km²

Inundated area 5,000 – 45,000 km²

Peak discharge 2000 – 10,000 m³/s

Monsoon-type of rainfall Annual rainfall ~830 mm (200 – 2000mm) The Netherlands ~ 42,000 km²

Rainfall in the Upper Niger Catchment

20th century

Annual rainfall in the Upper Niger Basin mm Annual sum 5-year moving average 100-year average 0 0

1981-2000

Gauge Dire

Inner Niger Delta at an extent of approx. 28,000 km²

SWIM Streamflow Simulation

Discharge before and after Inner Niger Delta (1981–2000)

Ρ

K .

Streamflow gauge Dire (wetland outlet) 1970–1979

Streamflow gauge Dire (wetland outlet) 1970–1979

Ρ

IK

Some Reasons to Integrate Wetland Processes

- To adequately simulate discharge downstream of the wetland
- To account for evapotranspiration "losses" within the wetland
 - Important information for regional climate models
- Relevant for the Inner Niger Delta
 - To assess usable area for floating rice production
 - To assess climate change & variability impacts on agriculture, fishery, and cattle

Data Requirements

Spatial Data

- DEM
- Flow accumulation map

Calibration

• Spatial and temporal information about inundation

Preprocessing

Identify wetland outlet (in GIS)

Assume that wetland is a lake

- Flood the lake (e.g. module *r.lake* in GRASS GIS)
- Identify inundation zones
 - Water levels [m²]
 - Inundation storage volumes [m³]

GRASS module *r.param.scale* to identify ponds (water traps)

• Map with grid cells that are identified as sinks (no surface runoff)

2 new HRU attributes

- inundation zone
- water trap (ponds)

Processes: Overview

- Flooding
- Routing, backwater
- Evaporation (water surface)
- Percolation
- Release
- HRUs
 - Switch from land to water phase
- Parameters
 - Flow-threshold for flooding (cross-sectional area)
 - Parameter for release (linear storage)
 - Backwater subbasins input file

Processes: Flooding

Calibration parameter: correction of inflow threshold

Processes: Routing, Backwater

If inflow(sub) > flowThresh(sub) then

- Remove *inflow volume > flowThresh* from routing
- Route only *inflow volume* <= *flowThresh*
- Put *excess volume* into inundation storage(s)
- Perform *leveling* due to backwater effects

else

• Route normally

If upstream subbasin has a share on wetland then

 Perform leveling of inundation storages of corresponding subbasins

Processes: Backwater, Leveling

Processes: Backwater, Leveling

D

Processes: Evaporation, Percolation

If HRU inundated (threshold) then

- Switch from land to water phase
 - ET_{act} = ET_{pot} (water surface)
 - No surface runoff
 - Percolation (percolation volume = unsaturated water capacity of upper soil layer)
 - Ground water recharge
 - Subsurface runoff

else

• Proceed normally

Processes: Release

- Calculate release volume per time step
- Add release to volume to be routed into downstream subbasin (next time step)

Calibration parameter: release coefficient [%] of storage volume

PIK

Inundation

Usable area for floating rice

Limitations of the Current Version

- Scale issue, the Inner Niger Delta is a huge (meso-scale) wetland, like the Sudd in Sudan (White Nile)
 - Can the inundation module be applied to small wetlands?
- Not a hydrodynamic model but process-based
- Not fully spatially explicit but "semi-explicit"
- Vegetation processes
- Ground water processes

Problems

- Accuracy of DEM, a **few centimeters** of elevation can have **large impacts** on inundation area
- Niger splits into two rivers
- Climate data
 - How reliable are GPCC and CRU rainfall data in West Africa?

Thank you for your attention!

Inundation area comparison

Streamflow at IND inlet and outlet A1B scenario

K

PI

SWIM Streamflow + STAR Climate Scenarios

Mean daily discharge 2011 – 2060 at Koulikoro Scenario: 1 degree steps

Preprocessing: Inundation Zones

Flow accumulation

GRASS module: r.lake

- xy-location
- water level (max. inundation depth)

Output

Input

- Lake area [m²]
- Inundation Zones [m²]
- Volume per zone [m³]

Wetland outlet

- How much water is evaporated in the delta?
- In average ~10 km³/a (5-20 km³)
 - New York City or Berlin inundated 10m
- Modification / control of routing during preprocessing
 - SWIM MapWindow Interface

