# Evaluation of SWAT Auto-calibration using Diverse Efficiency Criteria

2011 International SWAT Conference

Hyunwoo Kang

# Kangwon National University, South Korea

Kangwon National University



#### Comparison of different efficiency criteria for hydrological model assessment

P. Krause<sup>1</sup>, D. P. Boyle<sup>2</sup>, and F. Bäse<sup>1</sup>

<sup>1</sup>Department for Geoinformatics, Hydrology and Modelling, Friedrich-Schiller-University, Jena, Germany <sup>2</sup>Department of Hydrologic Sciences, Desert Research Institute, Reno, Nevada, USA

Received: 7 January 2005 - Revised: 1 August 2005 - Accepted: 1 September 2005 - Published: 16 December 2005





non-point sources would require very expensive monitoring efforts. Mathematical modeling is a necessary step in the implementation and post-processing stage of model development, as well as the ability to develop interactive post-processing tools that provide the opportunity for easier understanding of hydrologic system function; and, the

KNU http://www.EnvSys.co.kr

# Soil and Water Assessment Tool (SWAT)



# Calibration SWAT model

Calibration of model through adjusting input parameter. (Manual calibration)





# Calibration SWAT model





# Parameter Solution (Parasol) Method



### Finds the best parameter Based on Shuffle Complex Evolution(SCE-UA)



#### Root Mean Square Error(RMSE)

#### Coefficient of Determination $(\mathbb{R}^2)$

Index of agreement d

Modified NSE and d

Relative efficiency criteria NSE and d



Objectives of study

 Modification of SWAT Auto-calibration using different efficiency criteria.

• Comparison of each SWAT Auto-calibration and finding the efficiency criteria which make the better calibration result.





#### Soyanggang dam watershed

Area: 2,703 km<sup>2</sup>

Forest : 89.6 %

Agricultural area : 5.3 %





#### Nash-Sutcliffe Model Efficiency Coefficient (NSE)

$$NSE = 1 - \frac{\sum_{i=1}^{n} (O_i - S_i)^2}{\sum_{i=1}^{n} (O_i - \overline{O})^2}$$

$$S_i$$
 = Simulated data  
 $O_i$  = Observed data  
 $\overline{O}$  = The average of  
observed data



#### **NSE** with logarithmic values



Using to overcome oversensitivity to extreme values

# Index of agreement d (Willmot, 1981)



Using to overcome insensitivity of NSE and R<sup>2</sup>

# Modified forms of NSE and d



# Relative efficiency criteria NSE and d



More sensitive in particular during low flow conditions

#### The objective function of current SWAT Auto-calibration



# Sum of the squares of the residuals(SSQ)







Methods  
NSE with logarithmic values  

$$\int_{i=1}^{n} (\ln O_i - \ln S_i)^2$$

$$\int_{i=1}^{n} (\ln O_i - \ln \overline{O})^2$$
Modified forms of NSE  

$$\int_{i=1}^{n} (|O_i - S_i|) = \int_{i=1}^{n} (|O_i - S_i|)$$

$$\int_{i=1}^{n} (|O_i - S_i|) = \int_{i=1}^{n} (|$$

KNU http://www.EnvSys.co.kr



Modified SWAT auto-calibration can consider various efficiency criteria

#### Modified SWAT Auto-calibration

NSE with logarithmic values

Index of agreement d

Modified NSE and d

Relative efficiency criteria NSE and d



Daily Simulation in 2006



| Parameter | Description                                                                       |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| ALPHA_BF  | Baseflow alpha factor                                                             |  |  |  |  |  |
| BIOMIX    | Biological mixing efficiency                                                      |  |  |  |  |  |
| BLAI      | Maximum potential leaf area index                                                 |  |  |  |  |  |
| CANMX     | Maximum canopy storage                                                            |  |  |  |  |  |
| CH_K2     | Effective hydraulic conductivity in main channel alluvium                         |  |  |  |  |  |
| CH_N2     | Mannings' "n" value for the main channel                                          |  |  |  |  |  |
| CN2       | SCS runoff curve number for moisture condition II                                 |  |  |  |  |  |
| EPCO      | Plant evaporation compensation factor                                             |  |  |  |  |  |
| ESCO      | Soil evaporation compensation factor                                              |  |  |  |  |  |
| GW_DELAY  | Groundwater delay                                                                 |  |  |  |  |  |
| GW_REVAP  | Groundwater "revap" coefficient                                                   |  |  |  |  |  |
| GWQMN     | Threshold depth of water in the shallow aquifer required for return flow to occur |  |  |  |  |  |
| REVAPMN   | Threshold depth of water in the shallow aquifer for "revap" to occur (mm)         |  |  |  |  |  |
| SFTMP     | Snow melt base temperature (° C)                                                  |  |  |  |  |  |
| SLOPE     | Increase the lateral flow                                                         |  |  |  |  |  |
| SLSUBBSN  | Average slope length                                                              |  |  |  |  |  |
| SMFMN     | Minimum melt rate for snow<br>(mm/° C/day)                                        |  |  |  |  |  |
| SMFMX     | Maximum melt rate for snow<br>(mm/° C/day)                                        |  |  |  |  |  |
| SMTMP     | Snow melt base temperature (° C)                                                  |  |  |  |  |  |
| SOL_AIB   | Moist soil albedo                                                                 |  |  |  |  |  |
| SOL_AWC   | Available water capacity of the soil layer                                        |  |  |  |  |  |
| SOL_K     | Saturated hydraulic conductivity (mm/hr)                                          |  |  |  |  |  |
| SOL_Z     | Soil depth (%)                                                                    |  |  |  |  |  |
| SURLAG    | Surface runoff lag time                                                           |  |  |  |  |  |
| TIMP      | Snow pack temperature lag factor                                                  |  |  |  |  |  |
| TLAPS     | Temperature laps rate (° C/km)                                                    |  |  |  |  |  |





Each SWAT auto-calibration was compared in total stream flow, high and low flow conditions



KNU http://www.EnvSys.co.kr

#### Comparison of Auto-calibration for high flow condition(top 10%)

| Efficiency criteria<br>Type of objective<br>function | NSE  | NSE_logar | Agg_d | NSEm | $d_{ m m}$ | NSErel | d <sub>rel</sub> |
|------------------------------------------------------|------|-----------|-------|------|------------|--------|------------------|
| NSE_logar                                            | 0.72 | 0.5       | 0.9   | 0.57 | 0.76       | 0.87   | 0.95             |
| Agg_d                                                | 0.77 | 0.87      | 0.91  | 0.66 | 0.81       | 0.90   | 0.96             |
| NSEm                                                 | 0.84 | 0.85      | 0.95  | 0.68 | 0.83       | 0.91   | 0.97             |
| dm                                                   | 0.84 | 0.85      | 0.95  | 0.68 | 0.83       | 0.91   | 0.97             |
| NSErel                                               | 0.40 | 0.37      | 0.71  | 0.28 | 0.56       | -0.18  | 0.44             |
| drel                                                 | 0.86 | 0.79      | 0.96  | 0.63 | 0.80       | 0.68   | 18-90 au         |

KNU http://www.EnvSys.co.kr



#### Comparison of Auto-calibration for low flow condition(bottom 10%)

| Efficiency criteria<br>Type of objective<br>function | NSE     | NSE_logar | Agg_d | NSEm   | $d_{ m m}$ | NSErel   | <b>d</b> rel |
|------------------------------------------------------|---------|-----------|-------|--------|------------|----------|--------------|
| NSE_logar                                            | -20.59  | -0.20     | 0.35  | -2.80  | 0.20       | -88.08   | -2.14        |
| Agg_d                                                | -535.70 | -1.09     | 0.07  | -23.36 | 0.04       | -1426.74 | -1.29        |
| NSEm                                                 | -29.49  | -0.15     | 0.16  | -3.00  | 0.22       | -95.33   | -1.46        |
| $d_{ m m}$                                           | -29.49  | -0.15     | 0.16  | -3.00  | 0.22       | -95.33   | -1.46        |
| NSErel                                               | -70.55  | -7.16     | 0.11  | -3.72  | 0.16       | -2254.60 | -1.38        |
| drel                                                 | -24.02  | -6.70     | 0.24  | -2.32  | 0.20       | -1056.67 | -2.00        |

KNU http://www.EnvSys.co.k



KNU http://www.EnvSys.co.kr



Unreasonable calibration result for low flow condition









# Conclusion

• In this study, SWAT Auto-calibration was modified by different efficiency criteria.

• As a result of this study, Auto-calibrations modified by modi\_NSE, modi\_d and rel\_d show the better calibration result for high flow conditions.





• In low flow conditions, the results of all autocalibrations are unacceptable.

• SWAT Auto-calibration should be improved and modified to make the better simulation for low flow conditions.



# Conclusion

 For better calibration and validation of hydrological modeling, combination and comparison of different efficiency criteria is needed.

•The result of this study can be used to improve the accuracy of SWAT Auto-calibration for various flow coditions.



### **□**Future study









Thank you for your attention, Contact Us...

# hwkang1985@gmail.com

