

Objectives

- Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- > Methodology
 - Model Inputs
 - Model Set up
- Results
- Conclusion

Objectives

- Building and calibrating a hydrologic model of Danube Basin
 Using SWAT and SWAT CUP
- > Quantifying the water resources availablity in Danube river Basin
- Modeling the major crops yield

EnviroGRIDS

Content:

> Objectives

> Introduction

- EnviroGRIDS
- BSC
- Danube

Methodology

- Model Inputs
- Model Set up
- > Results
- Conclusion

Danube as a part of Black sea, EnviroGrids project:

Coordination team : UNIGE and UNEP/GRID Coordinator: Dr. Anthony Lehmann Duration : April 2009- March 2013

Consortium: 27 partners, 15 countries

Total budget: 7.9M€

ww.envirogrids.net

enviroGRIDS main objectives

Content:

> Objectives

- Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- Methodology
 - Model Inputs
 - Model Set up
- Results
- Conclusion

- 1. Management (UNIGE)
- 2. Spatial Data Infrastructure (UNIGE)
- 3. Scenarios of change (UAB)

4. Hydrological basin models (EAWAG)

- 5. Impacts on selected Societal Benefits Areas (IISD)
- 6. Black Sea Basin Observation System development (UTCN)
- 7. Dissemination and training (SORESMA)

Our contribution to EnviroGRIDS project

Content:

> Objectives

> Introduction

- BSC

Results

- EnviroGRIDS

- Data collection for SWAT to model water resources in the BSC
- Build, calibrate and validate a hydrologic model of BSC
- Quantify the impact of land use and climate change on water quantity

Danube River basin within Black Sea Catchment

Content:

> Objectives

> Introduction

- BSC

- Danube

> Methodology

> Results

> Conclusion

- EnviroGRIDS

- Model Inputs

- Model Set up

General information

- Area: 800,000 km2
- coverage: parts of 19 countries
- Poulation_83 millions

Climate and Hydrology

- Precipitation Range: 500 to 2000 mm
- Averrage annual precipitation peaks: 3200 to 350 mm
- Altitude: -23 to 3894 m
- Highest average annual temperature: 11 to 12 C
- Highest seasonal change in Temperature: 74 C
- ✓ Human Impacts and Management
- ✓ Agricultural Status

<u>,</u>

elham.rouholahnejad@eawag.ch

idgenössische Technische Hochschule Zürich wiss Federal Institute of Technology Zurich

- > Objectives
- > Introduction
 - EnviroGRIDS
 - BSC
 - Danube

> Methodology

- Model Inputs
- Model Set up
- > Results
- Conclusion

Materials and Method

SWAT

- Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube

Methodology

- Model Inputs
- Model Set up
- Results
- Conclusion

Model Inputs

the stage

Content:

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- Methodology
 - Model Inputs
 - Model Set up
- Results
- Conclusion

Model Inputs

Content:

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- Methodology
 - Model Inputs
 - Model Set up
- Results
- Conclusion

Conceptual model of Hydrology in SWAT $\land \land \land \land \land \land$ **Evaporation and Transpiration** Precipitation Intercept **River discharge** infiltration **Root Zone** Surface runoff Lateral Flow **Unsaturated Zone Shallow Aquifer** Retur Revap from shallow Flow aquifer **Confining Layer**

Flow out of watershed

Recharge to deep aquifer

Model Inputs

Wheat and Maize Yield

Content:

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- Methodology
 - Model Inputs
 - Model Set up
- Results
- Conclusion

Model Inputs

Harvested area

Content:

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube

Methodology

- Model Inputs
- Model Set up
- Results
- Conclusion

Harvested Area, Rainfed Maize, MIRCA2000, 5 Arc min http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/MIRCA/index.html

- > Objectives
- > Introduction
 - EnviroGRIDS
 - BSC
 - Danube

> Methodology

- Model Inputs
- Model Set up
- > Results
- Conclusion

Model Setup

Model Setup

Content:

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube

Methodology

- Model Inputs
- Model Set up
- Results
- Conclusion

- Arc SWAT 2009.93.7 was used to parametraize the whole area
- Based on DEM and stream network the area of 800,000 km2 was devided into 1363 Subbasins (Threshold area was set to 300 km2)
- Multiple Soil, Landuse and Slop combination was chosen (Multiple HRUs, 44,000 HRUs)
- SWAT weather generator was used to fill in gaps in measured data
- ET Calculation based on Hargreavs Method
- Daily Steps Swat Run and Monthly Outputs
- > 39 yr simulation period, 3 yr warm up period (1970 to 2009)

Model Setup

Content:

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube

Methodology

- Model Inputs
- Model Set up
- Results
- Conclusion

- > Objectives
- > Introduction
 - EnviroGRIDS
 - BSC
 - Danube

> Methodology

- Model Inputs
- Model Set up

Results

Conclusion

Results

SWAT CUP

SA B B

Content:

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- > Methodology
 - Model Inputs
 - Model Set up
- > Results
- Conclusion

Welcome

Research

Teaching

AQUASIM

SWAT-CUP

UNCSIM.

IDENT

STOICHCALC

SIMBOX.

IRRM.

0 Software

Organisation

Publications

Department System Analysis, Integrated Assessment and Modelling **SWAT-CUP**

SWAT-CUP is a computer program for calibration of SWAT models. SWAT-CUP is a public domain program, and as such may be used and copied freely. The program links GLUE, ParaSol, SUFI2, and MCMC procedures to SWAT. It enables sensitivity analysis, calibration and uncertainty analysis of a SWAT model. The overall program structure is as shown in the Figure below.

Results examples

eawag

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Results

q_31

Content:

- Introduction
 - EnviroGRIDS
 - BSC
 - Danube

> Methodology

- Model Inputs
- Model Set up

Results

Conclusion

Results

Deep Aq Recharge Watershed BRECR

10.0

418 9 919 9.10 9.10 10.1

Content:

- > Objectives
- > Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- > Methodology
 - Model Inputs
 - Model Set up
- Results
- Conclusion

River Discharge

Watershed

1.17

13-38

48.48 10-128

1-21

10.482

Results

Content:

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- > Methodology
 - Model Inputs
 - Model Set up
- Results
- Conclusion

- > Objectives
- > Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- > Methodology
 - Model Inputs
 - Model Set up
- > Results
- Conclusion

Conclusion

- > Objectives
- Introduction
 - EnviroGRIDS
 - BSC
 - Danube
- Methodology
 - Model Inputs
 - Model Set up
- Results
- Conclusion

- Knowledge of the internal renewable water resouses is strategic information which is needed for long term planning and food security.
- The resulting tools and data will allow for the analysis of river basin pressures and their impacts on human and ecosystem well-being by local stakeholders and decision makers.
- Assessing the impact of climate change and landuse change will also help to provide early warning to vulnerable populations and identify the efforts needed to adapt and to limit negative social, economical and environmental impacts in the future.

Thanks for your attention

elham.rouholahnejad@eawag.ch

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich