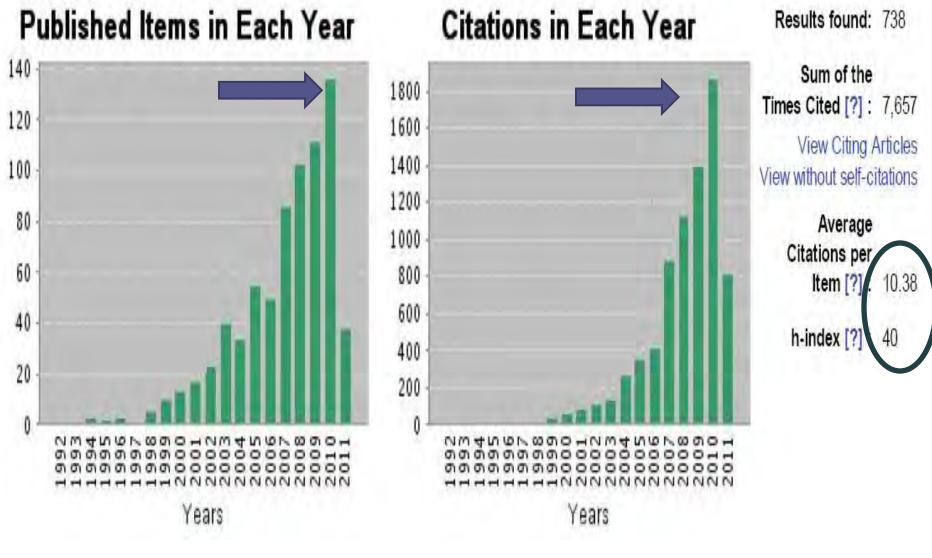
2011 International SWAT Conference


Soil and Water Assessment Tool Past, Present and Future

R. Srinivasan <u>r-srinivasan@tamu.edu</u> **Texas A&M University**

2011 International SWAT Conference

- 14th International SWAT conference since 2001
- Nearly 65 participants in three SWAT Workshops (Monday & Tuesday)
- More than **170** Conference Participants:
 - Representing 37 countries
 - o 6 continents
 - 13 poster presentations
 - 120 oral presentations

SWAT H-Index

Source: ISI Web of Knowledge, May 2011

Top 10 Most Cited SWAT Papers

		Citations per year						
		2006	2007	2008	2009	2010	Total	Mean
\langle	1 Large area hydrologic modeling and assessment - Part 1: Model development Author(s): Arnold JG, Srinivasan R, Muttiah RS, et al. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION Volume: 34 Issue: 1	61	100	109	122	50	643	45.93
	Pages: 73-89 Published: FEB 1998							
	2 SWAT2000: current capabilities and research opportunities in applied watershed modelling							
	Author(s): Arnold JG, Fohrer N	23	33	42	51	15	175	25
	HYDROLOGICAL PROCESSES Volume: 19 Issue: 3 Special Issue: Sp. Iss. SI Pages: 563-							
	572 Published: FEB 28 2005							
	3 Validation of the swat model on a large river basin with point and nonpoint sources							
	Author(s): Santhi C, Arnold JG, Williams JR, et al.	20	26	23	25	15	165	15
	JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION Volume: 37 Issue: 5							
	Pages: 1169-1188 Published: OCT 2001 The soil and water assessment tool: Historical development, applications, and future research							
	4 directions							
	Author(s): Gassman PW, Reyes MR, Green CH, et al.	0	20	45	63	30	157	31.4
(TRANSACTIONS OF THE ASABE Volume: 50 Issue: 4 Pages: 1211-1250 Published: JUL-							
	AUG 2007							
	Model evaluation guidelines for systematic quantification of accuracy in watershed							
	5 simulations							
	Author(s): Moriasi DN, Arnold JG, Van Liew MW, et al. TRANSACTIONS OF THE ASABE Volume: 50 Issue: 3 Pages: 885-900 Published: MAY-							
	JUN 2007	1	18	30	72	26	147	29.4
	6 Integratiion of basin-scale water-quality model with GIS	1	10	50	12	20	117	29.1
	Author(s): Srinivasan R, Arnold JG	4	8	6	2	2	119	6.61
	WATER RESOURCES BULLETIN Volume: 30 Issue: 3 Pages: 453-462 Published: MAY-							
	JUN 1994							
	Development and test of a spatially distributed hydrological water quality model for mesoscale	9						
	7 watersheds							
	Author(s): Krysanova V, Muller-Wohlfeil DI, Becker A ECOLOGICAL MODELLING Volume: 106 Issue: 2-3 Pages: 261-289 Published: MAR 1							
	1998	11	17	10	12	6	115	8.21
	8 Estimating hydrologic budgets for three Illinois watersheds		17	10		0	110	0.21
	Author(s): Arnold JG, Allen PM							
	JOURNAL OF HYDROLOGY Volume: 176 Issue: 1-4 Pages: 57-77 Published: MAR 1 1996	16	11	16	10	3	105	6.56
	9 Automatic calibration of a distributed catchment model							
	Author(s): Eckhardt K, Arnold JG JOURNAL OF HYDROLOGY Volume: 251 Issue: 1-2 Pages: 103-109 Published: SEP 15							
	2001	20	12	11	15	10	91	8.27
	10 A global sensitivity analysis tool for the parameters of multi-variable catchment models						<i>.</i>	0.27
	Author(s): van Griensven A, Meixner T, Grunwald S, et al.							
	JOURNAL OF HYDROLOGY Volume: 324 Issue: 1-4 Pages: 10-23 Published: JUN 15 2006	8	10	19	37	14	89	14.83
							- 6 8/	

as of May 2011

Top 10 Authors Published

View Records Exclude Records	Field: Author	Record Count	% of 1022	Bar Chart
	ARNOLD, JG	68	6.6536 %	
	SRINIVASAN, R	55	5.3816 %	
	VAN GRIENSVEN, A	19	1.8591 %	
	FOHRER, N	17	1.6634 %	I
	GASSMAN, PW	15	1.4677 %	
	CHAUBEY, I	13	1.2720 %	I
	ENGEL, BA	13	1.2720 %	
	FREDE, HG	13	1.2720 %	•
	BOSCH, DD	12	1.1742 %	
	BOURAOUI, F	12	1.1742 %	I
			as o	of (1992-2011)

Top 10 Countries Published

Field: Country/Territory	Record Count	% of 1022	Bar Chart
USA	512	50.0978 %	
PEOPLES R CHINA	93	9.0998 %	
GERMANY	86	8.4149 %	
CANADA	65	6.3601 %	
NETHERLANDS	45	4.4031 %	
ITALY	41	4.0117 %	• • • • • • • • • • • • • • • • • • •
ENGLAND	38	3.7182 %	 •
BELGIUM	37	3.6204 %	• • • • • • • • • • • • • • • • • • •
FRANCE	37	3.6204 %	 •
INDIA	34	3.3268 %	• • • • • • • • • • • • • • • • • • •
			(1992-2011)

Top 10 Institutions Published

Field: Institution Name	Record Count	% of 1022	Bar Chart
USDA ARS	129	12.6223 %	
TEXAS A&M UNIV	61	5.9687 %	
PURDUE UNIV	37	3.6204 %	
CHINESE ACAD SCI	35	3.4247 %	• • • • • • • • • • • • • • • • • • •
ARS	27	2.6419 %	• • • • • • • • • • • • • • • • • • •
BEIJING NORMAL UNIV	24	2.3483 %	1.00
IOWA STATE UNIV	22	2.1526 %	10 C
TARLETON STATE UNIV	22	2.1526 %	1.00
KANSAS STATE UNIV	21	2.0548 %	1.00
UNIV FLORIDA	21	2.0548 %	(1992-2011)

Top 10 Subject Areas Published

Field: Subject Area	Record Count	% of 1022	Bar Chart
WATER RESOURCES	443	43.3464 %	
ENVIRONMENTAL SCIENCES	294	28.7671 %	
GEOSCIENCES, MULTIDISCIPLINARY	207	20.2544 %	
ENGINEERING, ENVIRONMENTAL	145	14.1879 %	
AGRICULTURAL ENGINEERING	122	11.9374 %	
ENGINEERING, CIVIL	117	11.4481 %	
SOIL SCIENCE	89	8.7084 %	
ECOLOGY	83	8.1213 %	
AGRONOMY	68	6.6536 %	
METEOROLOGY & ATMOSPHERIC SCIENCES	46	4.5010 %	1 A A A A A A A A A A A A A A A A A A A

(1992-2011)

Top 10 Journals Published

Field: Source Title	Record Count	% of 1022	Bar Chart
HYDROLOGICAL PROCESSES	65	6.3601 %	
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION	63	6.1644 %	
TRANSACTIONS OF THE ASABE	63	6.1644 %	
JOURNAL OF HYDROLOGY	59	5.7730 %	
TRANSACTIONS OF THE ASAE	37	3.6204 %	1.1
JOURNAL OF SOIL AND WATER CONSERVATION	35	3.4247 %	1.00
AGRICULTURAL WATER MANAGEMENT	23	2.2505 %	1.00
ECOLOGICAL MODELLING	21	2.0548 %	1.00
ENVIRONMENTAL MODELLING & SOFTWARE	18	1.7613 %	1.
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES	18	1.7613 %	1.00

(1992-2011)

Reaching out to increase worldwide SWAT Applications ...

- Publish Spanish Manuals theory and user input/output manuals (Allan Jones and WB)
- Publish Chinese Theory Manual (Dr. Xuesong Zhang)
- Spanish Tutorial using ArcSWAT (Natalia Uribe Rivera, CIAT – Columbia)

SWAT Tutorial Videos

SWAT instructional videos

Learning to use the Soil and Water Assessment Tool

Introduction

1. Introduction to SWAT and the Instructional Videos

Downloading and Setting Up ArcSWAT

- 2. Download and Install ArcSWAT
- 3. Folders and Files

Running the Lake Fork Example

- 4. Getting Started Set up the initial project
- 5. Watershed Delineation
- 6. HRU Analysis
 - Overview and Land Use Definition
 - Soil and Slope Definition
 - <u>HRU Overlay</u>
- 7. Weather Data Input
- 8. Writing and Editing Input Files
- 9. The SWAT Model Simulation
- 10. SWAT Output Files

Running and Evaluating SWAT in Your Watershed

- 11. Obtaining elevation, land use, and soil data for your watershed
- 12. Obtaining weather data from theNational Climatic Data Center
- 13. Importing your weather data into SWAT
- 14 Modifying SWAT inputs HRU

developed by: **Dr. Jane Frankenberger**, *Purdue University* funded by: U.S. EPA

About these Videos

These videos were created by Purdue University, in collaboration with Texas A & M, with funding from U.S. EPA.

Other Resources for Learning to Use SWAT

Offical SWAT Website

Instructional workshops

Conferences

User Groups

Comments Suggestions?

Please share your suggestions or experiences using the videos in our online survey

or

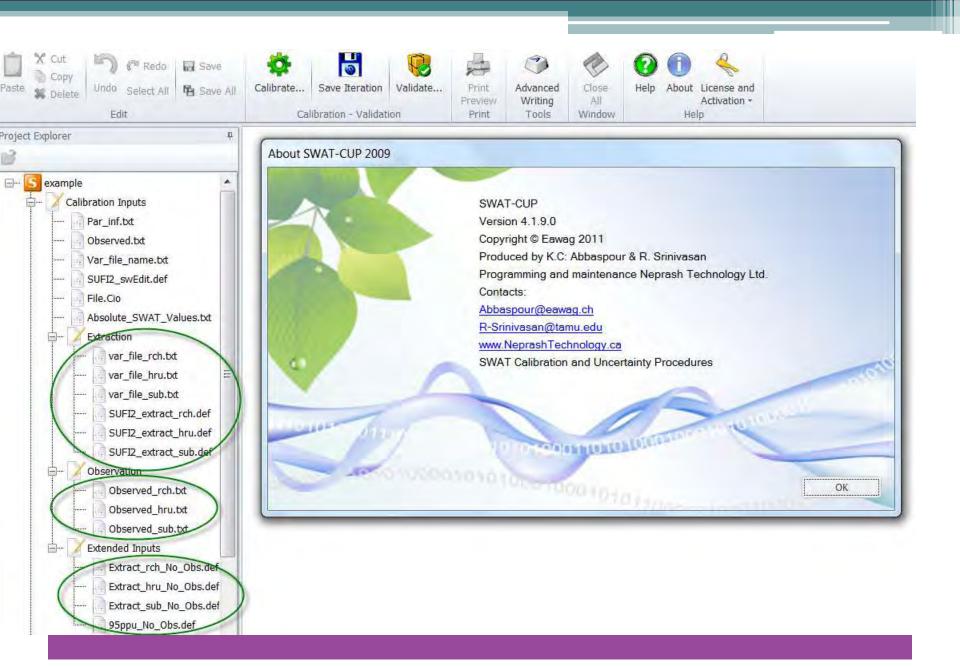
SWAT Tutorial Videos

1. Introduction to SWAT and the Instructional Videos

Downloading and Setting Up ArcSWAT

- 2. Download and Install ArcSWAT
- 3. Folders and Files

Running the Lake Fork Example


- 4. Getting Started Set up the initial project
- 5. Watershed Delineation
- 6. HRU Analysis
 - Overview and Land Use Definition
 - · Cail and Clana Definition

	and the	
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	19 06 18 24 21 1200	
C.	29 22 20	
5335		
37	Setup and Run SWAT Model Simulation	
47 45 48	Period of Simulation	
那	Starting Date : 1/1/1994 Ending I	Date : 12/31/1995 Simulate Forecast Period
585 55 (153	355	
52 61	Rainfall Sub-Daily Timestep	Period
3 62	Timestep: Minutes Starting	Date : Number of Simulations:
and the second s	Rainfall Distribution Printout S	ettings
	Skewed normal Oaily	C Yearly IF Print Vel./Depth Output □ Print Houdy Output
	C Mixed exponential 1.3 C Month	IV NYSKIP T Frint Pesticide Output Frint Soil Storage
	SWAT-exe Version	Nater Quality Output F Print Log Flows F Route Headwaters
		Binary Output F Print Soil Nutrients F Limit HRU Output
		MGT Output Print Snow Output
	(C 64-bit, debug C 64-bit, release) Print	MGT Output

Future ArcSWAT Improvements

- ArcGIS 10 version of ArcSWAT is in development, will be ready for testing by July
- Significant improvement expected, including:
 - Moving weather tools under swatedit menu there by users can add validation period or climate change weather without needing to rewrite other input files
 - Include weather interpolation tools and nexrad/grid based weather input processing
 - Remove calibration/sensitivity tools from swat and arcswat and move to SWAT-CUP
 - Adding more variables and user variables with absolute limits to manual calibration tool

Thanks to **Mike Winchell** and **Stone Environmental Inc.**, to accommodate most of the user group requests

New Tool available on SWAT website

Setup Hydrology Sediment Nitrogen Cycle Phosphorus Cycle Plant Growth Nutrient Losses Land Use Summary

	Summary By Reported Landuse													
	AREAkm2 346.7	CN 83.86	AWCmm 230.74	USLE_LS 1.51	IRRmm 2.93	PRECmm 724.15	SURQmm 62.34	GWQmm 7.69	ETmm 591.63	SEDth 5.73	NO3kgh 0.67	ORGNkgh 8.79	BIOMth 12.69	YLDth 3.32
AGRL	19.7	85.03	183.02	0.21	0.00	788.83	135.77	0.65	590.57	1.56	0.79	2.92	1.12	0.39
DATS	172.2	83.53	224.00	1.75	0.00	749.78	75.77	9.16	572.03	4.79	1.44	7.57	13.23	3.72
GRSG	84.4	85.13	227.41	1.89	0.00	709.22	60.08	3.72	614.02	3.91	1.23	9.21	14.52	2.19
CORN	84.4	85.13	227.41	1.89	0.00	709.22	60.08	3.46	666.82	4.23	0.99	9.24	32.16	12.39
PAST	254.3	82.89	191.94	2.49	0.00	789.41	88.91	6.12	646.66	1.18	4.04	2.16	3.55	0.00
FRST	113.5	77.52	179.04	2.72	0.00	829.44	81.16	27.85	585.12	0.06	0.37	0.07	17.72	0.00
BERM	2.4	85.71	242.44	0.65	0.00	715.10	122.36	0.00	575.56	0.09	0.49	0.65	0.67	0.00
JACH	39.7	82.49	201.08	2.71	0.00	732.79	56.37	7.51	567.53	0.09	0.16	0.23	0.43	0.00

Messages a	nd Warnings	
messages a	na manningo	

Crop: AGRL LESS THAN 5% OF WATER YIELD IS BASEFLOW Crop: BERM BIOMASS MAY BE TOO LOW 0.7 Mg/Ha Crop: BERM LESS THAN 5% OF WATER YIELD IS BASEFLOW Crop: JACH BIOMASS MAY BE TOO LOW 0.4 Mg/Ha

Sand	2.74a	1.70ab	-44	1.50ab	0.07ab	274	Various Rotations	3.68	3.12	1.36	0.59	0.80	0.60
0.1				1.00.1	0.07.1		e segre e etter per	1.5	1.00	10070	U.L.T	10000	
Loam	4.05a	1.64b	5.78b	0.41b	0.18b	0.93a	Pasture/Range	0.97	0.32	0.62	0.24	0.15	0.00
Citay	4.95a	4.4/8	2.00a	0.928	0.508	0.558	A MARKET SCHOOL SALES	9199	1.0 U			51.65	A1 40

"For each nutrient form within a treatment, medians followed by a different letter are significantly different (α = 0.05).
""No particulate N or P data were available for sandy soils.

From Harmel, D., et al. 2006 Compilation of Measured Nutrient Load Data for Agricultural Land Uses in the United States. Journal of the American Water Resources Association 42(5):1163-1178.

All Units mm

Future Tools.....

- Develop new Scenario tools at three user expertise level Texas Team
- Scenario uncertainty tool for SWAT-CUP Karim
- Sensitivity tool in SWAT-CUP Karim
- SWAT on Grid computing systems Karim, UNEP (Anthony Lehman) and others
- SWAT is OpenMI compliant (Ann van Griensven, UNESCO-IHE)
- SWAT CPU-parallel processing
- SWAT in R-statistical package (Jerry Whittaker, USDA-ARS)
- SWAT-GPU parallel processing using graphical processor, than CPU processor, up to 2000 processor on a desktop (Srini, TAMU)

Save the Date!

- July, 16-20, 2012 New Delhi (Drs. Gosain and Balaji)
- April/May 2013 Pattaya, Thailand (Drs. Manny and Samran)
- July 2013 Toulouse, France (Drs. Jose Miguel and Sabine)
- 2015 Sardinia, Italy (Pierluigi Cau)

THANK YOU

- Scientific Committee
- Karim Abbaspour
- Peter Allen
- Ann Van Griensven
- Jeff Arnold
- José María Bodoque del Pozo
- Pierluigi Cau
- Indrajeet Chaubey
- Nam-Won Kim
- Bouchra Haddad
- Nicola Fohrer
- Philip Gassman
- A.K. Gosain
- Jaehak Jeong

- Fanghua HAO •
- Allan Jones
- Valentina Krysanova
- Taesoo Lee
- Pedro Chambel Leitão
 - Antonio Lo Porto
 - Francisco Olivera
 - Manny Reyes
 - José M. Sánchez-Pérez
 - R. Srinivasan
 - Martin Volk
 - Michael Winchell
 - Mike White

A WORLD OF THANKS ... SWAT Ambassadors

- Karim Abbaspour
- Peter Allen
- Ann Van Griensven
- Jeff Arnold
- José María
 Bodoque del Pozo
- Nam-Won Kim
- Nicola Fohrer
- Philip Gassman

- A.K. Gosain
- Fanghua HAO
- Allan Jones
- Valentina
 Krysanova
- Antonio Lo Porto
- Manny Reyes
- Michael Winchell

THANK YOU Conference Sponsors

- Jacobs Engineering Group Inc.
- The Madrid Institute for Advanced Studies in Water Technologies IMDEA Water
- The Ministry of Science and Innovation, Spain
- ARNAIZ Consultores
- US Department of Agriculture Agricultural Research Service
- Texas AgriLife Research
- Texas A&M University
- University of Castilla La Mancha, Campus of Fábrica de Armas

Special THANKS to Ms. Jaclyn Tech and Ms. Courtney Smith

Sincere THANKS to Jose Maria Bodoque and his team

GROUP PHOTO