Model-based evaluation of Natural/Small Water Retention Measures: Insights from the Felső-Válicka case study in Hungary

Piroska Kassai (Hungary)

International SWAT Conference 10-12 July, 2024, Strasbourg

OPTAIN project

Horizon 2020

OPTAIN (OPtimal strategies to retAIN and re-use water and nutrients in small agricultural catchments across different soil-climatic regions in Europe

Warsaw University of Life Scien (WUL, Poland)

University of Bern, Centre for Development and Environment (UBERN, Switzerland)

Norwegian Institute for Water Research (NIVA, Norway)

University of Ljubljana (UL, Slovenia)

NIBIO

Klaipeda University (KU, Lithuania)

Ghent University, (UGent Belgium)

University of Milan, (UMIL, Italy)

Daugavpils University (DU, Latvia)

Research Institute for Soil and Water Conservation (VUMOP, Czech Republic)

Confédération suisse

Swiss Confederation

Confederazione Svizzera Confederaziun svizra

Swedish University of Agricultural Sciences (SLU, Sweden)

Norwegian Institute of Bioeconomy Research (NIBIO, Norway)

Global Water Partnership Central and Eastern Europe (GWP CEE, Slovakia)

Schweizerische Eidgenossenschaft Federal Department of Economic Affairs, Education and Research EAER

WBF Agroscope (WBF, Switzerland)

Brigitta Szabó - coordinator

The Hungarian **OPTAIN** team

János Mészáros

Kinga Farkas-Iványi

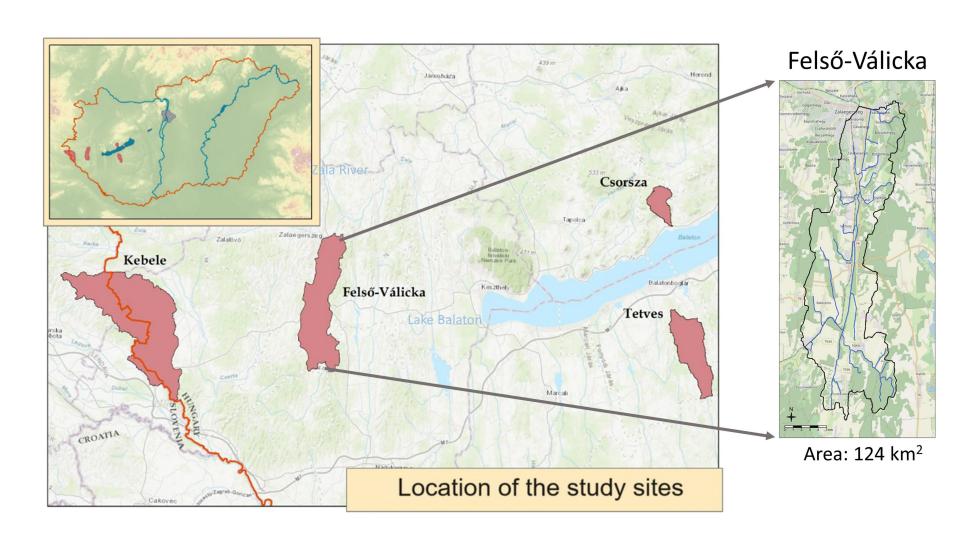
Ágota Horel

Péter Braun

Piroska Kassai

Input data: and Input data: no prodeling crop mapping crop

Policy


SWAP

SWAT BuildR'SWAT Editor

SWATFarniR' Scenarios

Timeline &Tasks

Hungarian case studies

Felső-Válicka watershed

- 27 km long
- 124 km² watershed area
- Flows into Zala River (main input of Lake Balaton)

Felső Válicka watershed

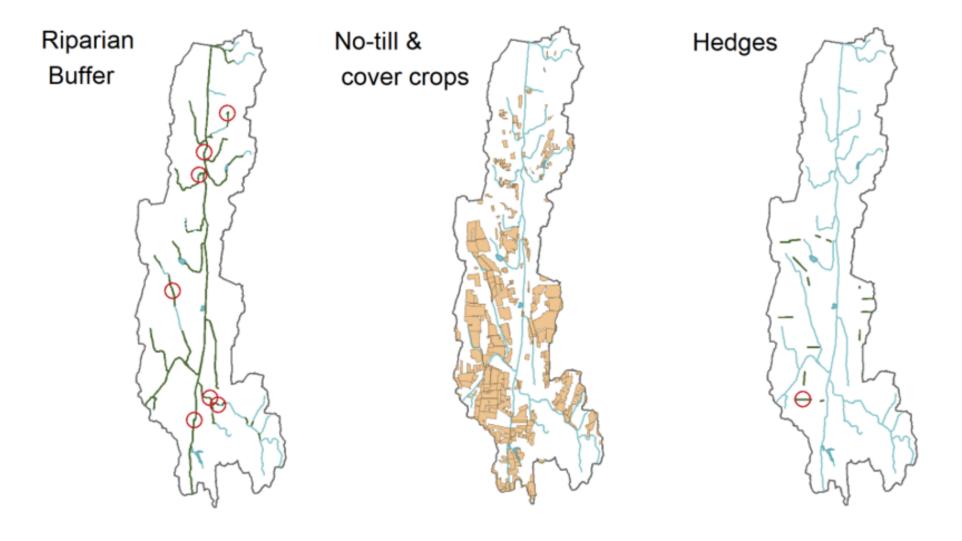
Environmental problems:

- soil erosion,
- extreme weather conditions,
- drought with increasing ferquency,
- decrease in soil quality,
- nutrient runoff.

decreased crop yield, increased production costs

Selected measures

Forested riparian buffers



No-till farming combined with cover crops

Buffer strips or hedges

SWAT+ model setup

Location of measures selected for the NSWRMs scenario analysis.

NSWRM scenarios

Land use change related:

- Buffer strips
- Riparian buffers

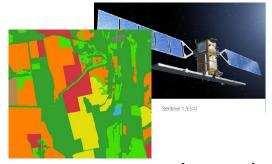
Easy to define by replacing the previous land use type with forests

Managemant related:

 No-till farming combined with cover crop

We need to know and define the baseline managment and replace it with no-till management

Definition the baseline management with SWATfarmR


SWATfarmR: A simple rule-based scheduling of management operations for SWAT

Enables the implementation of realistic farming practices taking into account the weather conditions in scheduling the management operations.

We can define crop rotation, different tillage practices, fertilizer practices so on.

HRUs are fields/parcels

Input data?

1. Remote-sensing based crop map

3. Interview with local farmers and farm advisors

	Proportion (%) of harvested area						
	WWHT	CORN	SUNF	WBAR	CANP	ALFA	
Statistics for Zala County	28	44	6	6	13	3	
Local agricultural company	30	40	5	6	15	4	
Derived crop map	42	23	14	0	18	3	
Revised crop map	30	38	6	5	18	3	

2. Regional statistics

		Zalae	da Péter akember: Bi gerszeg, Bec Bak 0130/1	sali u.	62.			Tábla nev		Enged	elő címe: 8945 élyszáma: I./00 J7-U-15 Jóvől	4245/20:	13			
Év	Něvény	Ta	lajművelés	Т	Műtrágyázá			Vetés		Т	Növényvéd	elem			Betal	karit
~		dátum	mi	dicum	mi	messy	dátum	mi	menny	dátum	mi	menny	14	v.	dious	át
		\perp		L			_			_		_	ш	i		_
	Ouri bissa Ouri bissa	-		94.00	CAN 27% Warnish meta	315 kg ba 250 km ba	_	_	_	-		-	-	\vdash		-
	Önstern				n quan unu					04.09.	Cyperkill 25 BC Property 180 SC Team Add Fetra Odoma	0,331ka 0,51ka 11ka 4 keha	290	19 35		Г
	Óusi bias									05.82.	Prises Medas Top Decis Mega Fortical	11ha 0,51ha 0,51ha 11ha	200	35		Г
	Out bim			95.94	MAS 572%	200 kg ha										
	Out birs									65.16.	Protect Variatio	0.51ha 1.751ha	250	15		
2908	Out bim									05.25.	Apropeed Apriles	101ba	200	42		
	Ouri bian											-			97.19.	
2908	Outi biza	33.80	Tartohántán és almonkrália											П		П
2910	Zoldmigns (21,3 ka)						08.08.	- Polisida 60% - Bibodien 30% - Micontoff, 10 %	29 kg ka					Г		Г
		11.09-12	Our melysnintis													
_		_	_	-		-	-			-		-		-		-
-		_	_			+	_		_	_		_	Н	Н	-	\vdash
-		_		-		+	_		_	-		+	-	Н		-
-		_	_	-		+	_	_	_	-		-	-	Н		Н
-		-	_	-	_	-	_	_	_	-		-	-	-	_	⊢

4. Farm management logbooks

Model setup on the agricultural fields

Baseline

Minimum tillage: on the fields of a large agricultural company (Baki Agrocentrum)

Conventional tillage: on the fields of other small farms

Scenario

No till combined with cover crop: on all agricultural fields

Conventional farming/tillage - baseline

Crop rotation: corn, winter wheat, sunflower, barley, canola (oilseed rape), alfalfa (lucerne)

Cover crop: between a winter crop and a summer crop (e.g. after wheat before corn; in the 50% percent of the potantial cases; farmers kill and turn it into the soil before winter

Tillage: conventional fall ploughing (30 cm deep) after all summer crops (corn, sunflower, canola)

CN2 (runoff curve number)	'rc_strow_g'
cons_prac (USLE P, slope lenghts)	'up_down_slope'
ov_mann (overland Manning's n value)	'convtill_nores'

name	cn_a	cn_b	cn_c	cn_d
rc_strow_g	67.00000	78.00000	85.00000	89.00000
	1	1 1		
name	usle_p	slp_len_max	description	
up_down_slope	1.00000	121.00000	Up_and_down_slo	pe
1				
name	ovn_mean	ovn_min	ovn_max	
convtill_nores	0.09000	0.06000	0.12000	

Minimum tillage - baseline

Crop rotation: corn, winter wheat, sunflower, barley, canola (oilseed rape), alfalfa (lucerne)

Cover crop: between a winter crop and a summer crop (e.g. after wheat before corn; in the 50% percent of the potential cases; farmers kill and turn it into the soil before spring

Tillage: conventional fall ploughing (30 cm deep) only after corn, deep ripper/subsoiler after and before all other crops

cn2	'rc_strow_g'
cons_prac	'cross_slope'
ov_mann	'chisplow_res'

name	cn_a	cn_b	cn_c	cn_d
rc_strow_g	67.00000	78.00000	85.00000	89.0000
name	usle_p s	lp_len_max	description	
cross_slope	0.75000	121.00000	Cross_slope_til	lage
name	ovn_mean	ovn_min	ovn_max	
chisplow_res	0.13000	0.10000	0.16000	

No-till combined with cover crop - scenario

Crop rotation: corn, winter wheat, sunflower, barley, canola (oilseed rape), alfalfa (lucerne)

Cover crop: between a winter crop and a summer crop in 100% percent of the potantial cases; farmers do not turn it into the soil before winter, they keep it to the next crop

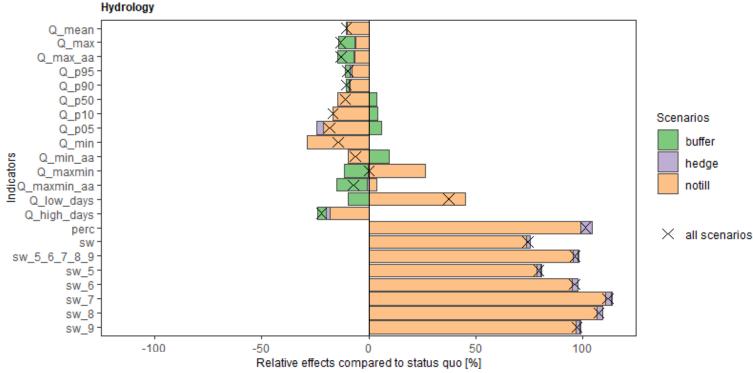
Tillage: no ploughing, all tillage operation are restricted to a direct driller (zerotill)

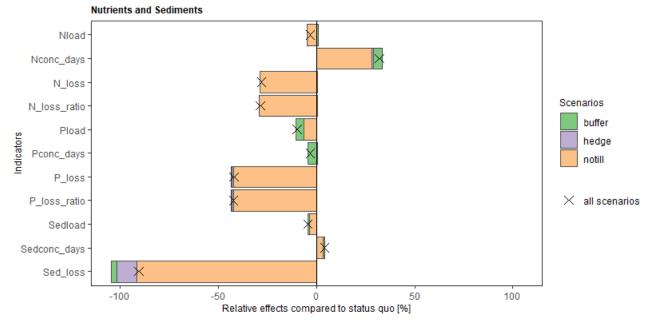
cn2	'legr_cont_g'
cons_prac	'contour_farming'
ov_mann	'notill_2-9res'

name	cn_a	cn_b	cn_	_c	cn_d
legr_cont_g 5	5.00000	69.00000	78.00	0000	3.00000
name	usle_p	slp_len_	_max	descriptio	n
contour_farming	0.50000	121.000	000 Con	ntour_tilla	ge
name	ovn_mean	ovn_min	ovn_max		
notill_2-9res	0.30000	0.17000	0.47000		

Land use related scenarios

nswrm	plnt_com mgt	cn2	cons_prac	ov_mann	tile	lum_dtl
buffer	frst_com	wood_f	up_down_slope	forest_heavy		
hedge	frst_com	wood_f	up_down_slope	forest_heavy		

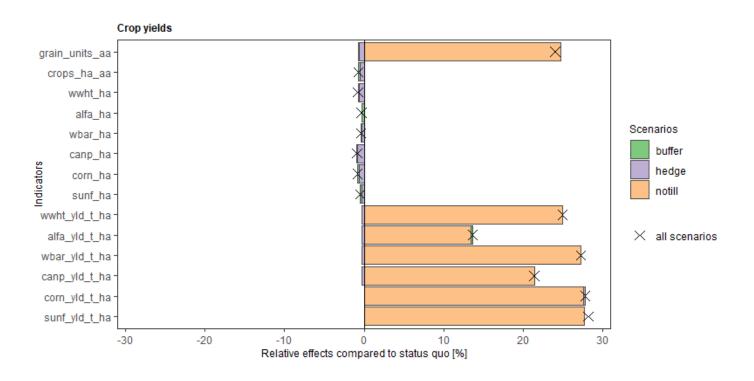




Results

No till with cc.:

- Flow parameters decreased slightly
- Soil water content increased significantly



No till with cc.:

Almost all nutrient and sediment indicators decreased

Results

No-till combined with cover crops has a positive projected influence on crop yield

Future work

- Testing other variety of managment scenarios: cover crop with conventional tillage, keeping cover crop different (shorter) period on the fields, no till with less cover crop
- Testing different landuse lum parameter settings

Thank you for your attention!

