The Effect of Cover Crops on Nitrate Loads in an Irish Catchment Under Climate Change

Floor Hermans¹, <u>Daniel Hawtree²</u>, Per-Erik Mellander², Joao Pedro Nunes¹

¹Wageningen University, Soil Physics and Land Management Group Wageningen, The Netherlands

²Teagasc, Department of Environment, Soils and Landuse Johnstown Castle, Ireland

Teagasc - Irish Agriculture and Food Development Authority

- Teagasc is a national body providing research, advisory, and training services to the agriculture and food industry and rural communities.
- Teagasc is involved in:
 - Farm Advisory
 - Education
 - Research & Innovation

Similar role to the USDA - ARS

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

The Agricultural Catchment Programme (ACP)

- The ACP is a long-term program designed to monitor and assess the efficacy of measures put in place to protect water quality (2008 – ongoing)
- Combines biophysical & socio-economic research with knowledge exchange: scientists, advisors, technologists, and technicians.
- Collaboration with >300 farmers in 6 catchments

Agricultural Catchment Programme Data

	Location	Parameters	Frequency	Number of sites per catchment
Weather	Catchment centre low-land	Rain, T _{air} , T _{soil} , RelHum, SolRrad, WindSpeed, WindDir	10-minutes	1 or 2
	Highland	Rain	10-minutes	1 or 2
Groundwater	Focused study sites	Water level, Chemistry: nutrients, metals, DO, Rh, EC, Temp, pH	30-minutes, Month	0, 6, 10, 17 or 19 piezometers
Surface water	Outlet	River flow, T _{water} , Water Chemistry: TP, TRP, TON, TOC, Turb, EC	10 minutes	1
	River network	Chemistry: nutrients, metals, DO, Rh, EC, Temp, pH	Monthly	10
	River network	Aquatic ecology: macro invertebrates, diatoms	6 months	8
Soil	Whole catchment	Soil sampling: N and P	4 year	Each field
Soil/bedrock	Focused study sites	Geophysical survey: EM, 2-D res, seismic refraction, GPR	once	2 hillslopes
Topography	Whole catchment	LiDAR survey 0.5m	once	

Water Quality in 2022 An Indicators Report

River Biological Quality 1987-2022 Q-Value (water body level)

2019-2022 (n=2362)	393		924				643		400		- 2
2019-2021 (n=2358)	386		924				652		395		- 1
2016-2018 (n=2318)	357		939				598		417		- 7
2013-2015 (n=2307)	359		1009				540		394		- 5
2010-2012 (n=2271)	394			1030			500		337		- 10
2007-2009 (n=2157)	336			977			493		332		- 19
2004-2006 (n=2281)	392			939			537		377	36	
2001-2003 (n=2312)	459			841			512		454	46	
1998-2000 (n=2318)	510			804			482		474	48	
1995- 1997 (n=2296)	528			747			442		519	60	
1991 - 1994 (n=2335)	507			827			438		513	50	
1987-1990 (n=2326)	619	Alta a sec		790			342		484	91	
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100	0%
				F	ercentage and	number of riv	er water bod	ies				

High Good Moderate Poor Bad

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

The Good News

Water Quality in 2022 An Indicators Report

1987-2022 Q-Value (water	r body level)					Т	he B	ad I	New	S
2019-2022 (n=2362)	393			924			643		400	- 2
2019-2021 (n=2358)	386			924			652		395	- 1
2016-2018 (n=2318)	357		939				598		417	
2013-2015 (n=2307)	359		1009				540			- 5
2010-2012 (n=2271)	394		1030				500		337	
2007-2009 (n=2157)	336			977			493		332	- 19
2004-2006 (n=2281)	392			939			537		377	36
2001-2003 (n=2312)	459			841			512		454	46
1998-2000 (n=2318)	510			804			482		474	48
1995- 1997 (n=2296)	528			747			442		519	60
1991 - 1994 (n=2335)	507		827			438		513		50
1987-1990 (n=2326)	619			790			342		484	91
0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
				Percentage and	d number of riv	er water bod	ies			

High Good Moderate Poor Bad

River Biological Quality

Water Quality in 2022 An Indicators Report nental Protection Agency An Ghniomhaireacht um Chaomhnú Co

River Biological Quality 1987-2022 Q-Value (water body level)

2019-2022 (n=2362)	393			924			
2019-2021 (n=2358)	386			924			
2016-2018 (n=2318)	357		2	939			5
2013-2015 (n=2307)	359			1009			
2010-2012 (n=2271)	394			1030			
2007-2009 (n=2157)	336			977			
2004-2006 (n=2281)	392			939			
2001-2003 (n=2312)	459			841			512
1998-2000 (n=2318)	510			804			482
1995- 1997 (n=2296)	528			747			442
1991 - 1994 (n=2335)	507			827			438
1987-1990 (n=2326)	619	August 1		790			34
0%	10%	20%	30%	40%	50%	60%	
			F	Percentage and	l number of riv	er water boo	lies

High Good Moderate Poor Bad

Water Quality in 2022 An Indicators Report

Study Catchment - Castledockrell

- 10-year annual average nitrate-N con in surface water is 7.06 mg/L (environmental quality standard is 2.60 mg/L)
- The main pathway is nitrogen leaching to the groundwater, ending up in the surface waters (Mellander et al., 2012; Mellander et al., 2022).
- Sources include both point and diffuse sources (i.e. farmyards, spreading of fertiliser / manure; Trodd et al., 2022).

Area = 11.2 km² Precip = 1,015 mm Streamflow = 528 mm 54% arable (Spring Barley)

Study Catchment - Castledockrell

- 10-year annual average nitrate-N con in surface water is 7.06 mg/L (environmental quality standard is 2.60 mg/L)
- The main pathway is nitrogen leaching to the groundwater, ending up in the surface waters (Mellander et al., 2012; Mellander et al., 2022).
- Sources include both point and diffuse sources (i.e. farmyards, spreading of fertiliser / manure; Trodd et al., 2022).

Area = 11.2 km² Precip = 1,015 mm Streamflow = 528 mm 54% arable (Spring Barley)

Study Catchment - Castledockrell

- 10-year annual average nitrate-N con in surface water is 7.06 mg/L (environmental quality standard is 2.60 mg/L)
- The main pathway is nitrogen leaching to the groundwater, ending up in the surface waters (Mellander et al., 2012; Mellander et al., 2022).
- Sources include both point and diffuse sources (i.e. farmyards, spreading of fertiliser / manure; Trodd et al., 2022).

Area = 11.2 km² Precip = 1,015 mm Streamflow = 528 mm 54% arable (Spring Barley)

Study Objective

To investigate the combined effect of climate change and cover crops on nitrate load in Castledockrell.

- Use SWAT to quantify future nitrate loads under different climate scenarios.
 - How does this impact the water balance?
 - ► How does this impact nitrate loads?

Study Objective

To investigate the combined effect of climate change and cover crops on nitrate load in Castledockrell.

- Use SWAT to quantify future nitrate loads under different climate scenarios.
 - How does this impact the water balance?
 - > How does this impact nitrate loads?

Model Calibration

- Manual Calibration: Q & N load
 - > 8 hydrologic parameters
 - > 10 nitrogen parameters
- Warmup: 2010 2013
- Calibration: 2014 2017
- Validation: 2018 2021
- Ob. Fun: KGE, PBIAS, R2

Data	Resolution
DEM	2 m
Land-cover	Field scale
Soil properties	1:1000
Meteorological Data (temperature, wind speed, radiation, precipitation, humidity)	Daily time series
Streamflow	Daily time series
Nitrate-N load	Daily time series

Calibration / Validation Performance

Daily	Period	R2	KGE	PBIAS
Streamflow	Calibration 2014-2017	0.91	0.71	-23.23%
	Validation 2018-2021	0.84	0.88	-8.72%

Precipitation [mm]

Calibration / Validation Performance

Daily	Period	R2	KGE	PBIAS
Streamflow	Calibration 2014-2017	0.91	0.71	-23.23%
	Validation 2018-2021	0.84	0.88	-8.72%
NO3 Load	Calibration 2014-2017	0.85	0.72	-5.57%

Precipitation [mm]

Climate Change & Cover Crop Scenarios

- Climate scenarios provided by the WaterFutures Project
 - Key expected impacts: increased precip (in particular from Aug Feb) & an increase in the frequency and intensity of extreme events

- The cover crops worked into rotations are (primarily) brassicas or rye (with oil-seed rape)
 - >Timing of sowing is more important than the specific crop used

Climate Change & Cover Crop Scenarios

- Climate scenarios provided by the WaterFutures Project
 - Key expected impacts: increased precip (in particular from Aug Feb) & an increase in the frequency and intensity of extreme events

- The cover crops worked into rotations are (primarily) brassicas or rye (with oil-seed rape)
 - > Timing of sowing is more important than the specific crop used

1980-2005 2040-2069 1980-2005 2040-2069 1980-2005 2040-2069 1980-2005 2040-2069 2070-2100 2010-2039 2070-2100 2010-2039 2010-2039 2070-2100 2010-2039 2070-2100 Period

1980-2005 2040-2069 1980-2005 2040-2069 1980-2005 1980-2005 2040-2069 2040-2069 2010-2039 2070-2100 2010-2039 2070-2100 2010-2039 2070-2100 2010-2039 2070-2100 Period

1980-2005 2040-2069 1980-2005 2040-2069 1980-2005 2040-2069 1980-2005 2040-2069 2010-2039 2070-2100 2010-2039 2070-2100 2010-2039 2070-2100 2010-2039 2070-2100 Period

Nitrate Load Impacts

Nitrate Load Impacts

Nitrate Load Impacts

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Nitrate Load – Seasonal Patterns

Monthly anomaly plots for future periods
 – relative to historical values

Nitrate Load – Seasonal Patterns

Monthly anomaly plots for future periods
 – relative to historical values

What did we learn given our objectives?

- To investigate the combined effect of climate change and cover crops on nitrate load in Castledockrell.
- Use SWAT to quantify future nitrate loads under different climate scenarios.
 - > How does this impact the water balance?
 - How does this impact nitrate loads?

Initial scenario analysis indicates that climate change impacts outweigh the impacts of cover crops on N (i.e. increased N export)

What did we learn given our objectives?

- To investigate the combined effect of climate change and cover crops on nitrate load in Castledockrell.
- Use SWAT to quantify future nitrate loads under different climate scenarios.
 - > How does this impact the water balance?
 - How does this impact nitrate loads?

Initial scenario analysis indicates that climate change impacts outweigh the impacts of cover crops on N (i.e. increased N export)

Conclusions

 Model is very well-calibrated to both streamflow and nitrogen loads in Castledockrell catchment (other ACP sites?)

■ This is a very good starting point for further SWAT modelling in this catchment → more investigation into scenarios is needed

■ This will compliment other nitrate leaching modelling work that is in planning → SWAT for upscaling

Conclusions

 Model is very well-calibrated to both streamflow and nitrogen loads in Castledockrell catchment (other ACP sites?)

This is a very good starting point for further SWAT modelling in this catchment → more investigation into scenarios is needed

■ This will compliment other nitrate leaching modelling work that is in planning → SWAT for upscaling

Conclusions

 Model is very well-calibrated to both streamflow and nitrogen loads in Castledockrell catchment (other ACP sites?)

This is a very good starting point for further SWAT modelling in this catchment → more investigation into scenarios is needed

■ This will compliment other nitrate leaching modelling work that is in planning → SWAT for upscaling

Thank You for Your Attention!

Questions / Interest?

Please contact me at: daniel.hawtree@teagasc.ie

N-Risky & P-Risky Sites

Variable	Description	Units	Calibration range	Calibrated value
GW_DELA Y	Groundwater delay time	days	1 - 31	2
ALPHA_BF	Baseflow recession constant	1/days	0.1 - 0.95	0.25
RCHRG_D P	Deep aquifer percolation fraction	-	0-0.15	0
DEP_IMP	Depth to impervious layer in soil profile	mm	1500 - 6000	5000
SURLAG	Surface runoff lag coefficient	-	1 - 6	1
CN2	Initial SCS runoff curve number for moisture condition II	-	-30 - 0	-20
Sol_K	Saturated hydraulic conductivity	mm/hr	-0.6 - 0	-0.5
Sol_AWC	Available water capacity of the soil layer	mm H2O/ mm soil	0 – 0.5	+0.3

	Variable	Description	Units	Calibration range	Calibrated value
_	RCN	Concentration of nitrogen in rainfall	mg N/L	0 -15	15
	CMN	Rate factor for humus mineralization of active organic nutrients (N and P)	-	0.0001 - 0.03	0.0001
	CDN	Denitrification exponential rate coefficient	-	0.001 - 1.6	0.001
	SDNCO	Denitrification threshold water content	-	0.1 - 1.9	0.2
	NPERCO	Nitrate percolation coefficient	-	0.1 – 1	1
	N_UPDIS	Nitrogen uptake distribution parameter	-	0 - 100	100
	RCN_SUB	Atmospheric deposition of nitrate	mg/l	0-0.4	0.2
_	DRYDEP_ NH4	Atmospheric dry deposition of ammonium	kg/ha/yr	0-8.2	8.08
	DRYDEP_ NO3	Atmospheric dry deposition of nitrates	kg/ha/yr	0 - 1.2	1.12
	HLIFE_NG M	Half-life of nitrate in the shallow aquifer	Days	0 – 700	500

Climate Scenarios

- Climate scenarios were provided by the WaterFutures Project
 - 5 downscaled Global Climate Models: CNRM-CM5, ECEARTH, MIROC5, and MPI-ESM-LR (4 km horizontal resolution)
 - > 2 emission pathways: Intermediate (RCP4.5) and intensive (RCP8.5)
 - > 3 temporal intervals: 2010-2039 (NF), 2040-2069 (MF), and 2070-2100 (FF).
- Key Expected Impacts (w/ respect to nutrient export)
 - > Mean daily precipitation is projected to increase
 - > Precipitation will mainly increase in the period August to February
 - Increase in the number and intensity of extreme events

Nitrate Load – Seasonal Patterns

