

Drought induced land use change impacts on hydrology: A SWAT+ study in the Harz mountains, Germany

Paul Wagner & Nicola Fohrer

Motivation: extreme dry conditions

Photos: P. Wagner 2022

Study area

- Harz mountains, Germany
- Catchment of the Oker upstream of gauge Schladen
- Area: 361.6 km²
- Elevation: 89 m 1141 m
- 55% forest, 28% agriculture, 8% settlements

Headwater catchments

Land use change: Dead trees

Provided by F. Saba, P. Diaz & M. Gerke (TU Braunschweig)

Model setup: SWAT+

DEM (5 m) + Stream network (LGLN 2022)

Soil map (1:200 000) (BGR 2022)

Land use (10 m) (remote sensing) (EXDIMUM)

Weather data (interpolated) (EXDIMUM)

=> 5253 Hydrologic response units

Decrease in performance (example gauge Harzburg)

- when other land use map is used: -0.05 KGE
- when model is applied to period before land use change: -0.09 KGE

Strong land use changes need to be considered in model calibration => Dynamic land use change representation*

*Wagner, P.D. et al. 2019: Static vs dynamic LUC. Environmental Modelling & Software 122, 103987.

Dynamic representation of land use change in SWAT+

- Land Use Update Tool for SWAT+ (SWAT-LUT+)*
 - Writes scen_dtl.upd, scen_lu.dtl, ru_unit_upd001-005, ls_unit_upd001-005
 - Updates hru.con, hru-data.hru, hydrology.hyd, ls_unit.ele/.def, rout_unit.ele/.def, object.cnt, topography.hyd, file.cio
- Available for QSWAT+ 2.2.5, SWAT+ Editor 2.1.3, Revision 60.5.4
- Works for Revision 61.0 with a few workarounds
- Model setup: constant land use (2014-2018) annual land use updates (2019-2023)

*Moriasi, D.N. et al. 2019: SWAT-LUT: A Desktop Graphical User Interface for Updating Land Use in SWAT. JAWRA, 1102–1115.

SWAT+LUT - Land Use Update T	ool for SWAT+	$C \setminus A / A T + H + T$
General LULC Rasters Info		SVVAI-LUI+
Backup Options		
Back-up at first use	ck-up each time before tables are	: modified
SWAT + Project Database		
Select SWAT Project Database		
Define Landuse Update Inputs		
		Define Landuse Rasters
SWAT+		
SWAT+ Processing Option		Vector-Based (best for most projects)

=> +1064 HRUs

Dynamic representation of land use change in SWAT+

🗐 scen_lu.dtl - Editor

Datei Bearbeiten Format Ansicht Hilfe

scen_lu.dtl: written by SWAT+ editor v2.3.1 on 2024-06-26 18:26 for SWAT+ rev.60.5.4

name	conds	alts	acts !lut	t										
lu_change_hru_fr	14	7	7											
var	obj	obj_num	lim_var	lim_op	lim_const	alt1 alt	2 alt3	alt4	al	.t5	al	t6	alt7	7
jday	null	0	null	-	1.00000	=		-		-		-	-	-
year_cal	null	0	null	-	1990.00000	=		-		-		-	-	-
jday	null	0	null	-	1.00000	-		-		-		-	-	-
year_cal	null	0	null	-	2013.00000	-		-		-		-	-	-
jday	null	0	null	-	1.00000	-	- =	-		-		-	-	-
year_cal	null	0	null	-	2019.00000	-	- =	-		-		-	-	-
jday	null	0	null	-	1.00000	-		=		-		-	-	-
year_cal	null	0	null	-	2020.00000	-		=		-		-	-	-
jday	null	0	null	-	1.00000	-		-		=		-	-	-
year_cal	null	0	null	-	2021.00000	-		-		=		-	-	-
jday	null	0	null	-	1.00000	-		-		-		=	-	-
year_cal	null	0	null	-	2022.00000	-		-		-		=	-	-
jday	null	0	null	-	1.00000	-		-		-		-	=	-
year_cal	null	0	null	-	2023.00000	-		-		-		-	-	-
act_typ	obj	obj_num	name	option	const	const2	fp o	outcome						
hru_fr_update	null	0	lu_change_1990-001	ls_unit_upd001.ele	e 0.00000	0.00000	ru_unit_upd001.	ele y	n	n n	n	n	n	
hru_fr_update	null	0	lu_change_2013-001	ls_unit_upd002.ele	e 0.00000	0.00000	ru_unit_upd002.	ele n	У	n n	n	n	n	
hru_fr_update	null	0	lu_change_2019-001	ls_unit_upd003.ele	e 0.00000	0.00000	ru_unit_upd003.	ele n	n	y n	n	n	n	
hru_fr_update	null	0	lu_change_2020-001	ls_unit_upd004.ele	e 0.00000	0.00000	ru_unit_upd004.	ele n	n	n y	n	n	n	
hru_fr_update	null	0	lu_change_2021-001	ls_unit_upd005.ele	e 0.00000	0.00000	ru_unit_upd005.	ele n	n	n n	У	n	n	
hru_fr_update	null	0	lu_change_2022-001	ls_unit_upd006.el	e 0.00000	0.00000	ru_unit_upd006.	ele n	n	n n	n	У	n	
hru_fr_update	null	0	lu_change_2023-001	ls_unit_upd001.ele	e 0.00000	0.00000	ru_unit_upd001.	ele n	n	n n	n	n	У	

Model calibration and application

Model evaluation

Kling-Gupta efficiency						
Gauge	Calibration	Validation	Difference			
Sennhütte	0.67	0.66	-0.01			
Altenau	0.70	0.66	-0.04			
Gitterkopf	0.41	0.53	+0.12			
Harzburg	0.75	0.69	-0.06			

Model suitable for dynamic land use change (2018-2023) and static land use (validation: 2014-2017).

Temporal land use change impacts on water yield and evapotranspiration

Temporal land use change impacts on surface runoff and sediment yield

- Monthly Precipitation (mm) Increase in 100 200 sediment yield 300 due to: 400 30-Precipitation Monthly Difference in Surface Runoff (mm) 0.8 25-Surface Runoff **Monthly Difference** Sediment Yield 20. 15-Sediment 04first land use update 10-5 0 -5 -10-2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
 - forest loss
 - surface runoff (r=0.40)
 - precipitation (r=0.69)

Evapotranspiration Surface runoff Percolation Sediment yield

No land use change, no impacts

Modeling:

- Successful implementation of dynamic land use changes in SWAT+
- Calibration for dynamic land use representation
- Necessary improvement of multi gauge calibration

Impacts:

- Strong impacts of tree mortality on water balance components
- Decrease of ET, increase of surface runoff, percolation and erosion
- Improve drought and flood resilience by afforestation with climate resilient trees

Thank you very much for your attention!

Data sources: BGR 2022: Bodenübersichtskarte 1:200.000 (BÜK200). LGLN 2022: Auszug aus den Geodaten des Landesamtes für Geoinformation und Landesvermessung Niedersachsen 2022.

Contact: pwagner@hydrology.uni-kiel.de

Bundesministerium für Bildung und Forschung

