

Linking watershed phosphorus management to eutrophication responses in European lakes

25 June 2025

Albert Nkwasa

- 10-5-5-5

LANGE COLORADO

- - - - - - - - -----

* * *

the water the country of

Context - Eutrophication

- Eutrophication is caused by an excessive presence of nutrients (Nitrogen & Phosphorus)
- Generates **excessive algae** that causes many problems, e.g. **deoxygenation** and water toxicity
- Still affecting adversely large portions of European lakes (Ibisch et al., 2016)

Context – EUROLakes project

INTEGRATED PROTECTION AND RESTORATION APPROACHES FOR NATURAL LAKE ECOYSTEMS

EUROLakes project is addressing **eutrophication** challenges by proposing an innovative, **holistic**, and **science-based** approach to the protection and restoration of European natural lakes and their ecosystems

Implement **ecosystem modelling (SWAT+**) techniques to simulate the impact of selected protection and restoration **(P&R) approaches on lake ecosystems**

Co-funded by the European Union

Selected European lakes

5

EUROLakes Highlighted losses/challenges

ernational Institute fo

11454 www.iiasa.ac.at

1. Lake Vico

Major problem is Lake Eutrophication

(a) Agriculture (Intensive cultivation of hazelnut orchards) is leading;

- to **excessive nutrient** (Nitrogen & Phosphorous) export from land to lake
- to increased **soil erosion risk** due to the bare soil required to optimize mechanical harvesting

(b) Lake has very minor tributaries, thus a long residence time (17 years)

(c) **Water stratification** according to temperature, impedes efficient vertical water mixing

Eutrophication & Trophic State Index (TSI)

TSI is a classification system used to describe the **nutrient status** and **biological productivity** of a water body, typically lakes or reservoirs

TSI Value	Trophic Status	General Characteristics Clear water, low productivity, low nutrients		
0-40	Oligotrophic			
41-50	Mesotrophic	Moderate productivity, average nutrient levels		
51-70	Eutrophic	High productivity, possible algae blooms, high nutrients		
71+	Hypereutrophic	Very high productivity, frequent algal blooms, poor water quality		

Lake Vico - TSI

(2002 – 2024)

100 m - Copernicus Global Land Service (CGLS

Long term trend

Modelling

N

Modelling approach

Adapted from van Wijk, et al. (2023)

Modelling approach

Modelling approach – GPLake-M

(van Wijk, et al., 2023)

Key input: Initial state, P-loading, residence time, lake depth

- Regime shifts in lakes are explained by **critical turbidity**
- Critical turbidity (black dashed line) indicates the

phytoplankton nutrient content at which regime shifts occur.

Captures the essential mechanisms leading to alternative stable states in shallow lakes

Model setup (SWAT+)

Input data

Data variable	Spatial Resolution (m)	Time period	
Digital Elevation Model (DEM)	10 m		
Landuse	10m	2020	
Soil map	1:20000	1985	
Crop areas	10m	2020	
Fertilizer application (Nitrogen)	180 kg/ha/yr		
Fertilizer application (Phosphorus)	80 kg/ha/yr		
Climate (Precipitation & Temperature)	Daily (2011 – 2017)		

264 subbasins, 3618 HRUs

River flow evaluation

Soil erosion evaluation

Mean basin value = 14.5 – 17.5 t/ha/yr

Mean basin value = 13.6 t/ha/yr

Applied Systems Analysis

Current Lake status

With the current Phosphorus (P) loading
 (41 ton/yr), the lake is phytoplankton
 dominant with zero macrophytes.

• By back-casting. a reduction **(89 %)** in P loading is required to reverse a shift from dominance of phytoplankton to macrophyte dominance.

Selected Management practices

Contour farming

Fertilizer (P) reduction

Pathway	TP (Kg/yr)	Reduction(%)	
Baseline (180kg/ha -N and 150Kg -P)		41125	
Fertilizer reduction (-40%)		28697	30.22
Fertilizer reduction (-80%)		13434	67.33
Filter strip		17008	58.64
Contour		23180	43.64
Filter strip + Contour		6565	84.04
Filter strip + Contour + 50% reduction		4026	90.21

Selected Management practices

- Combining all management practices is the most effective approach.
- One challenge is that the current model has **one-way** coupling.
- Focus is mainly on phosphorus and phytoplankton
- The model applies mainly to **shallow lake**s (around 2 meters deep).
- Still, it's a **simple and clear** way to help understand and manage lake ecosystems.

Thank you! nkwasa@iiasa.ac.at