Analysis of future climate scenarios to assess regulatory and cultural ecosystem services using an integrated SWAT+ and GOTM-WET model

UNIVERSIDAD CATÓLICA DE MURCIA

Inmaculada C. Jiménez-Navarro, Adrián López-Ballesteros, Jorrit P. Mesman, Don Pierson, Dennis Trolle, Anders Nielsen, Javier Senent-Aparicio

Conclusions

"Positive contribution to the people provided by nature itself"

Carpenter et al. 2009

AIMS:

 Study the evolution of RES in a watershed and its lagoon (Mar Menor) under two climate scenarios Climate change

SWAT+

GOTM-WET

CMIP6

SSPs

Monthly AET GLEAM 3.7b (2003 – 2022): Calibration [2003-2012] (*R*² = 0.62, PBIAS = 1.86 %, NS = 0.59 and KGE = 0.77) Validation [2013-2022] (*R*² = 0.63, PBIAS = 5.89 %, NS = 0.61 and KGE = 0.73)

Introduction

Methodology

RESULTS

Conclusions

SMART LAGOON

Climatic variation

	ΔPC (%)	∆Temp (ºC)	D.Tor.(d)
Hist	-	-	11
SSP 2-45 M	-17%	1.4	9
SSP 2-45 F	-22%	1.9	11
SSP 5-85 M	-17%	2.1	11
SSP 5-85 F	-11%	3.5	14

	Hist	SSP 2-45 M	SSP 2-45 F	SSP 5-85 M	SSP 5-85 F
Daily outflow	0.58	0.61	0.50	0.66	1.51
(mm)	-	5%	-14%	12%	158%
Nitrogen	76.52	58.07	55.85	92.41	142.15
inputs (tons)	-	-24%	-27%	21%	86%
Phosphorus	38.99	45.71	41.52	55.23	121.94
inputs (tons)	-	17%	6%	42%	213%
Sediment	0.06	0.05	0.05	0.05	0.11
yield (t/ha)	-	-5%	-11%	-4%	96%
Green water	628.59	564.11	536.83	552.38	563.17
Green water	-	-10%	-15%	-12%	-10%
Blue water	58.03	32.12	25.37	31.51	51.42
	-	-45%	-56%	-46%	-11%

RES evolution in the watershed

RESULTS

Conclusions

RES evolution in the lagoon

				1			Hict	SSP 2-	SSP 2-	SSP 5-	SSP 5-
		SSP 2-45 M	SSP 2-45 F	SSP 5-85 M	SSP 5-85 F		ΠΙΣ	45 M	45 F	85 M	85 F
	Hist					No. of	3	2	1	3	6
Water temperature	20.24	21.69	22.17	22.48	23.67	anoxias					
(ºC)	-	7%	10%	11%	17%	Duration in days	47	44	39	21	91
Oxygen concentration	5.47	5.59	5.66	5.51	5.08	Average duration	16	22	39	7	15
(g/m3)	-	2%	4%	1%	-7%						
Nitrogen	0.0054	0.0046	0.0044	0.0079	0.0103	Min. oxygen (value	0.91	0.70	0.81	1.47	0.91
concentration (gN/m3)	-	-14%	-18%	72%	92%						
Phosphorus	0.0084	0.0108	0.0117	0.0099	0.0231	Mean oxygen 1.43 value	1 / 2	2 1 0 2	0.01	1.62	1 50
concentration (gP/m3)	-	29%	40%	-8%	176%		1.02	0.01	1.05	1.38	

PROBLEMS OF THE STUDY

- Only one GCM (MRI-ESM2-0) → No variability, more uncertainty
- Bias-correction for precipitation → empirical quantile VS monthly linear-correction
- Average data → Extreme values go unnoticed

FUTURE IMPROVEMENTS

- Create an ensemble with more models to reduce uncertainty and consider variability
- Compare different methods of biascorrections
- Analyze the variability of each component

Bibliography

- Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: model use, calibration, and validation. *Transactions of the ASABE*, 55, 1491-1508. <u>https://doi.org/10.13031/2013.42256</u>.
- Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., & Srinivasan, R. (2017). Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. *Journal of the American Water Resources Association*, 53, 115-130. <u>https://doi.org/10.1111/1752-1688.12482</u>.
- Carpenter, S. R., et al. (2009). Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences, 106(5), 1305-1312. <u>https://doi.org/10.1073/pnas.0808772106</u>.
- Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785. <u>https://doi.org/10.13031/trans.58.10715</u>.
- Umlauf, L., Burchard, H., Bolding, K. (2005). GOTM: Source Code And Test Case Documentation. Devel version-pre, 2005, vol. 4.
- León, V. M., Bellido-Millán, J. M., Pérez-Ruzafa, Á., Concepción, M., Oliva-Paterna, F. J., Ruiz, A., ... & Tercero-Gómez, M. D. C. (2016). Mar Menor: una laguna singular y sensible. Evaluación científica de su estado. Centro Oceanográfico de Murcia.
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, <u>https://doi.org/10.5194/gmd-9-1937-2016</u>.
- Riahi et al. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environmental Change 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

Analysis of future climate scenarios to assess regulatory and cultural ecosystem services using an integrated SWAT+ and GOTM-WET model

icjimenez@ucam.edu

9 SMAR AGOON

UCAM UNIVERSIDAD CATÓLICA DE MURCIA

Inmaculada C. Jiménez-Navarro, Adrián López-Ballesteros, Jorrit P. Mesman, Don Pierson, Dennis Trolle, Anders Nielsen, Javier Senent-Aparicio

