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MULTI‐SITE CALIBRATION OF THE SWAT
MODEL FOR HYDROLOGIC MODELING

X. Zhang,  R. Srinivasan,  M. Van Liew

ABSTRACT. The growing popularity of applying complex, semi‐physically based distributed hydrologic models to solve water
resource problems poses important issues that must be addressed related to the use of spatial data to calibrate and validate
such models. In this study, a single‐objective optimization method (GA) and a multi‐objective optimization algorithm (SPEA2)
were applied to optimize the parameters of the Soil and Water Assessment Tool (SWAT) using observed streamflow data at
three monitoring sites within the Reynolds Creek Experimental Watershed, Idaho. Results indicated that different optimization
schemes can lead to substantially different objective function values, parameter solutions, and corresponding simulated
hydrographs. Thus, the selection of an optimization scheme can potentially impact modeled streamflow. Parameters estimated
by optimizing the objective function at three monitoring sites consistently produced better goodness‐of‐fit than those obtained
by optimization at a single monitoring site. This stresses the importance of collecting detailed, spatially distributed data to
conduct simultaneous multi‐site calibrations. When applied with multi‐site data, the single‐objective (GA) method better
identified parameter solutions in the calibration period, but the multi‐objective (SPEA2) method performed better in the
validation period. Overall, the application of different optimization schemes in the Reynolds Creek Experimental Watershed
demonstrated that the single‐objective (GA) and the multi‐objective (SPEA2) optimization methods can provide promising
results for multi‐site calibration and validation of the SWAT model. These results are expected to help the users of SWAT and
other distributed hydrologic models understand the sensitivity of distributed hydrologic simulation to different calibration
methods and to demonstrate the advantages and disadvantages of single‐objective and multi‐objective parameter estimation
methods.
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n recent years, hydrologic models have been increas‐
ingly used by hydrologists and water resource managers
to understand and manage natural and human activities
that affect watershed systems. These hydrologic models

can contain parameters that cannot be measured directly due
to measurement limitations and scaling issues (Beven, 2000).
For practical applications in solving water resources prob‐
lems, model parameters are calibrated to produce model pre‐
dictions that are as close as possible to observed values.
When calibrating a hydrologic model, one or more objectives
are often used to measure the agreement between observed
and simulated values. The objectives to be optimized can be
the combination of multiple goodness‐of‐fit estimators
(e.g.,�relative  error, coefficient of determination), multiple
variables (e.g., water, energy, sediment, and nutrients), and
multiple sites (Yapo et al., 1998; Gupta et al., 1998; Santhi et
al., 2001b; Van Liew and Garbrecht, 2003; White and Chau‐
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bey, 2005; Demarty et al., 2005; Cao et al., 2006; Engeland
et al., 2006; Bekele and Nicklow, 2007). With the recent de‐
velopment of distributed hydrologic models that can spatial‐
ly simulate hydrologic variables, the use of multi‐site
observed data to evaluate model performance is becoming
more common.

The Soil and Water Assessment Tool (SWAT) model (Ar‐
nold et al., 1998) is a continuous, long term, distributed‐
parameter model that can simulate surface and subsurface
flow, soil erosion and sediment deposition, and nutrient fate
and movement through watersheds. SWAT has been applied
worldwide for hydrologic and water quality simulation. For
example, the SWAT model has been incorporated into the
U.S. Environmental Protection Agency (USEPA) Better As‐
sessment Science Integrating Point and Nonpoint Sources
(BASINS) software package, and is being applied by the
USDA for the Conservation Effects Assessment Project
(CEAP) (Gassman et al., 2007). Over 250 peer‐reviewed
published articles have reported SWAT applications, reviews
of SWAT components, or other SWAT‐related research (Gas‐
sman et al., 2007). The SWAT model has been extensively
tested for hydrologic modeling at different spatial scales. For
example, Gollamudi et al. (2007) evaluated SWAT in two
agricultural  fields in southern Quebec; Spruill et al. (2000)
and Chu and Shirmohammadi (2004) successfully simulated
monthly flow in a 5.5 km2 watershed in Kentucky and a
3.4�km2 watershed in the Piedmont physiographic region of
Maryland, respectively; Santhi et al. (2001a) successfully
simulated monthly flow in the Bosque River watershed with
a drainage area of 4,277 km2; Zhang et al. (2007) applied

I



2040 TRANSACTIONS OF THE ASABE

SWAT for daily and monthly streamflow simulation in the
5,239 km2 Luohe River watershed, China; and Srinivasan et
al. (1998) and Arnold et al. (1999) evaluated the SWAT mod‐
el for hydrologic modeling of the conterminous U.S.

In the application of SWAT, multi‐site data have been used
to calibrate parameter values (Santhi et al., 2001b; Van Liew
and Garbrecht, 2003; White and Chaubey, 2005; Cao et al.,
2006; Bekele and Nicklow, 2007). For simultaneous multi‐
site automatic calibration of SWAT, two types of calibration
methods are usually implemented. The first calibration meth‐
od aggregates the different objective function values calcu‐
lated at each monitoring site into one integrated value, and
then applies the single‐objective optimization algorithms for
parameter estimation (e.g., van Griensven and Bauwens,
2003). The second calibration method uses multi‐objective
evolutionary algorithms to optimize the different objective
functions calculated at multiple sites simultaneously, and
finds a set of multiple Pareto optimal solutions (e.g., Bekele
and Nicklow, 2007). Currently, the Shuffled Complex Evolu‐
tion (SCE) algorithm (Duan et al., 1992) is incorporated into
SWAT for automatic parameter estimation using a single ob‐
jective (one objective function or integrated multiple objec‐
tive functions) (van Griensven and Bauwens, 2003).

In many SWAT applications, the model has been cali‐
brated using objective functions at a single site or for inte‐
grated multi‐sites objective functions, but multi‐objective
evolutionary algorithms were seldom applied for multi‐site
calibration.  Therefore, the objective of this study was to
compare and evaluate the effect of single and multi‐objective
optimization schemes on the calibrated parameter values and
simulated hydrographs from SWAT. In order to accomplish
this objective, a program for parameter optimization of
SWAT using single and multi‐objective evolutionary algo‐
rithms was developed. Based on previous studies (Tang et al.,
2006; Zhang et al., 2008a), the single‐objective and multi‐
objective optimization algorithms applied in this study were
Genetic Algorithm (GA) and Strength Pareto Evolutionary
Algorithm 2 (SPEA2), respectively. These two optimization
algorithms were implemented to estimate the parameters in
SWAT for the Reynolds Creek Experimental Watershed in
Idaho with observed streamflow data at three monitoring
sites. The differences between estimated parameter values
and simulated hydrographs are explored and discussed. The
results of this study are expected to help the users of SWAT
and other distributed hydrologic models understand the sen‐
sitivity of distributed hydrologic simulation to different cal‐
ibration methods and to demonstrate the advantages and
disadvantages of single‐objective and multi‐objective pa‐
rameter estimation methods.

MATERIAL AND METHODS
STUDY AREA DESCRIPTION

The Reynolds Creek Experimental Watershed (RCEW),
with drainage area of 239 km2, is located about 80 km south‐
west of Boise, Idaho, and exhibits a considerable degree of
spatial heterogeneity. The topography of the watershed
ranges from a broad, flat alluvial valley to steep, rugged
mountain slopes, with a range in elevation from 1101 to
2241�m (Seyfried et al., 2000). Because of orographic effects,
the average annual precipitation ranges from about 250 mm
at the outlet to more than 1100 mm at the upper end of the wa-

tershed. Perennial streamflow is generated at the highest
elevations in the southern part of the RCEW where deep, late‐
lying snowpacks are the source for most water (Seyfried et
al., 2000). Although much of the watershed has steep, shal‐
low, rocky soils, there are areas of deep, loamy rock‐free
soils. Land cover on the RCEW consists of rangeland and for‐
est communities of sagebrush, greasewood, aspen, and coni‐
fers (94%) and irrigated cropland (6%). The average slopes
of the three subwatersheds are about 0.04 m m-1. The lengths
of stream segments are about 10, 11, and 26 km for the Salm‐
on, Tolgate, and Outlet subwatersheds.

The locations of the RCEW and three streamflow moni‐
toring gauges (Salmon, Tolgate, and Outlet) are shown in fig‐
ure. 1. For modeling purposes, the RCEW was partitioned
into subwatersheds connected by a stream network and then
into hydrologic response units (HRUs) consisting of unique
combinations of land cover and soils in each subwatershed.
The delineation of subwatersheds and HRUs allows SWAT to
consider the spatial heterogeneity of land uses and soils in the
watershed. It was assumed that there were no interaction be‐
tween HRUs, that is, the HRUs are non‐spatially distributed.
Through HRU delineation, the computational costs of simu‐
lations can be minimized by lumping similar soil and land use
areas into a single unit (Neitsch et al., 2005). The number of
subwatersheds, number of HRUs, and drainage area of each
monitoring site are listed in table 1.

APPLICATION OF SWAT
The hydrologic routines within SWAT account for snow‐

fall and melt, vadose zone processes (i.e., infiltration, evapo‐
ration, plant uptake, lateral flow, and percolation), and

Figure 1. Reynolds Creek Experimental Watershed and three streamflow
monitoring gauges.

Table 1. Basic characteristics of Reynolds
Creek Experimental Watershed.

Watershed Subwatershed
No. of

Subbasins
No. of
HRUs

Area
(km2)

Reynolds
Creek

Tolgate 16 47 55
Salmon 10 19 36
Outlet 60 162 239
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Table 2. Parameters for calibration of the SWAT model.
Code Parameter Description Range

Parameters governing surface water response
1 CN2 Curve number II ±20%
2 ESCO Soil evaporation compensation factor 0‐1
3 SOL_AWC Available soil water capacity ±20%

Parameters governing subsurface water response
4 GW_REVAP Groundwater reevaporation coefficient 0.02‐0.2
5 REVAPMN Threshold depth of water in the shallow aquifer for reevaporation to occur (mm) 0‐500
6 GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 0‐5000
7 GW_DELAY Groundwater delay (days) 0‐50
8 ALPHA_BF Base flow recession constant 0‐1
9 RCHRG_DP Deep aquifer percolation fraction 0‐1

Parameters governing basin response
10 CH_K2 Effective hydraulic conductivity in main channel alluvium (mm h‐1) 0.01‐150
11 TIMP Snow pack temperature lag factor 0‐1
12 SURLAG Surface runoff lag coefficient (day) 0‐10
13 SFTMP Snow melt base temperature (°C) 0‐5
14 SMTMP Snowfall temperature (°C) 0‐5
15 SMFMX Maximum snowmelt factor for June 21 (mm H2O/°C‐day) 0‐10
16 SMFMN Minimum snowmelt factor for Dec. 21 (mm H2O/°C‐day) 0‐10

groundwater flow. Surface runoff volume is estimated using
a modified version of the Soil Conservation Service (SCS)
curve number (CN) method (USDA‐SCS, 1972). A kinemat‐
ic storage model (Sloan et al., 1983) is used to predict lateral
flow, whereas return flow is simulated by creating a shallow
aquifer (Arnold et al., 1998). Either the Muskingum or Vari‐
able Storage method is used for channel flood routing. Out‐
flow from a channel is adjusted for transmission losses,
evaporation,  diversions, and return flow. The SWAT model
contains a large number of parameters that are used to de‐
scribe the spatially distributed water movement through the
watershed system. Many of these parameters, such as CN and
surface runoff lag coefficient (SURLAG), cannot be mea‐
sured directly and thus must be estimated through calibra‐
tion. In this study, 16 parameters that govern the surface
water response, subsurface water response, and basin re‐
sponse of the SWAT model were used in calibration. A gener‐
al description of the 16 parameters is shown in table 2 (Van
Liew et al., 2007). The default parameters were determined
by the methods introduced by Neitsch et al. (2005). The ad‐
justing range of each parameter was determined based on rec‐
ommendations from previous literature (e.g., Neitsch et al.,
2005; van Griensven et al., 2006; Van Liew et al., 2007). The
parameter calibration was conducted simultaneously for the
three subwatersheds because the calibration results of the
three stations are interrelated. There are two reasons for the
simultaneously adjusting of parameters. First, the Salmon
and Tolgate stations feed into the Outlet before exiting the
watershed (fig. 1), which means that the calibration of Salm‐
on and Tolgate can influence the calibration of the Outlet.
Second, some parameters (e.g., surface lag and snow melt
rate) can only be adjusted for the entire watershed for SWAT.
For further discussion of multi‐site calibration of SWAT, refer
to Migliaccio and Chaubey (2007).

The period from water year (WY) 1966 to 1967 was used
as the model parameter initialization period, which allowed
the model to cycle multiple times to minimize the effects of
the user's estimates of initial state variables, such as soil wa‐
ter content and surface residue. Daily streamflow data from
1968 to 1969 were used to calibrate SWAT, and daily stream‐
flow data from 1970 to 1972 were used for validation.

OPTIMIZATION ALGORITHMS
Before describing the optimization algorithms, several

common variables are introduced here: D is the number of
optimized parameters; T is the maximum number of genera‐
tions; t is the current generation number; Pt is the population
of parameter solutions at generation number t; N is the num‐
ber of parameter solutions in a population; x is the vector of
decision variables, which consists of hydrologic parameters
in this study; xi is the ith parameter solution in the population,
which is a D‐dimensional vector xi = (xi1, xi2, ..., xiD), and xid
is the dth dimension of the ith parameter solution. The param‐
eter solution is denoted as a chromosome in the GA and
SPEA2.

Single‐Objective  Optimization
For single‐objective optimization, there is only one objective

function that needs to be optimized. Given the objective func‐
tion Θ≠Ω⊆Ω ,: DRf , for Ω∈x , the value ∞<= )*(* xff
is called a global maximum if and only if :x Ω∈∀

)()( * xx ff ≥ , where x* is the parameter solution for global
maximum and the set � is the feasible parameter space.

There are many automatic calibration algorithms that can
be used to implement the single‐objective optimization. For
example, Duan et al. (1992) developed the SCE‐UA algo‐
rithm, which has been incorporated into the 2005 version of
SWAT and successfully applied for parameter estimation of
SWAT (e.g., van Griensven and Bauwens, 2003; Eckhardt et
al., 2005; Van Liew et al., 2005; van Griensven and Bauwens,
2005; Van Liew et al., 2007; Zhang et al., 2007; Zhang et al.,
2008b). Besides SCE‐UA, Genetic Algorithms (GA), Par‐
ticle Swarm Optimization (PSO), Artificial Immune Systems
(AIS), and Differential Evaluation (DE) also have been suc‐
cessfully applied for parameter estimation in hydrologic
models or other complex problems. Zhang et al. (2008a)
compared the efficacy of these five global optimization algo‐
rithms for calibrating SWAT, and found GA is a promising
single‐objective  optimization method.

GA involves stochastic search procedures inspired by evo‐
lutionary processes in biology of natural selection and genet‐
ics (Holland, 1975; Goldberg, 1989), such as inheritance,



2042 TRANSACTIONS OF THE ASABE

mutation, selection, and crossover. With flexibility and ro‐
bustness, GA has been successfully applied to solve complex
nonlinear programming problems in many science and engi‐
neering branches (Reca and Martinez, 2006). The general
procedure for applying GA (fig. 2) involves three major oper‐
ators: selection, crossover, and mutation.

Selection operator. The fittest chromosomes in a popula‐
tion are preferred to be selected to reproduce promising new
offspring. A roulette wheel algorithm is applied to select
chromosomes for the crossover and mutation operations. The
probability of a chromosome being selected as a parent is pro‐
portional to its fitness. In order to overcome shortcomings of
using the original fitness value in the roulette wheel algo‐
rithm, a relative fitness value (F′) for each chromosome was
calculated using the following equation (Reca and Martinez,
2006):

rqNqrF 2)1)(1()(' −++=

where q is the selection pressure (0 < q < 1), and r is the rank
assigned to the chromosomes based on their fitness (Reca and
Martinez, 2006).

Crossover operator. The purpose of crossover is ex‐
changing important building blocks of two parent chromo‐
somes to generate new offspring. The probability of crossing
two chromosomes is determined by an input parameter (Pc).
There are three main crossover methods: one‐point cross‐
over, two‐point crossover, and uniform crossover (Goldberg,
1989). In this study, the uniform crossover operator was ap‐
plied. In uniform crossover, for each dimension of the parent
chromosomes, two parent chromosomes swap the parameter
values with a probability of 0.5 to generate new offspring.

Mutation operator. For each dimension of the offspring
chromosome, a random number between [0,1] is generated.
If this random number is less than the mutation probability
(Pm), then a newly generated parameter value will replace the
old parameter value of the specific dimension.

After the newly bred chromosomes are generated through
the selection, crossover, and mutation operators, they will be
incorporated into the population using a steady‐state‐delete‐
worst plan (Reca and Martinez, 2006), in which the least fit
member of the parent population is eliminated and replaced
by the offspring. Several control parameters of the GA were
determined according to Schaffer et al. (1989) and Reca and
Martinez (2006): Pm was set to 1/D, Pc was set equal to 0.5,
and q was set to 1.

Multi‐Objective Optimization
For multi‐objective optimization problems, a series of objec‐

tive functions need to be taken into account simultaneously. The
general multi‐objective optimization problem can be defined as:
find the parameter solution x* that will optimize the objective
function vector )](,),(),([)( 21 xxxxf mfff K=  where m is the
number of objective functions. As there are multiple objective
functions that need to be optimized simultaneously, and differ‐
ent objective functions prefer different parameter solutions, it is
difficult to find a single global optimum parameter solution. The
Pareto optimality concept is defined to evaluate whether a pa‐
rameter set is “optimal” or not. An objective function vector

)](,),(),([)( 21 xxxxf ′′′=′ mfff K  is said to dominate another
objective function vector )](,),(),([)( 21 xxxxf mfff K=
(denoted by ( ) )(xfxf f′ ), if ( ) ( )xx ii iffmi ∃∧≥′∈∀ },...,1{

( ) ( )xx ii ffm >′∈ :}...,1{  (Zitzler and Thiele, 1999). If the ob-

Figure 2. Flowchart of GA.

f 1

f 2

Figure 3. Graphical illustration of the PF* and dominated objective func‐
tion vectors for a maximization problem. Solid circles denote dominated
objective function vectors, and empty circles consist of the PF*.

jective function vector f(x*) of a point Ω∈*x  is not domi‐
nated by all the other objective function vectors of the param‐
eter solutions in the feasible parameter space, then x* is taken
as a Pareto optimal parameter solution. The Pareto optimal
set (P*) is defined by the set of parameter solutions that are
not dominated by other parameter solutions. The objective
function vectors corresponding to the Pareto optimal set
comprise the Pareto front (PF*). An illustration of the PF*
and dominated objective function vectors for a maximization
problem with two objectives f1 and f2 is shown in figure 3.
The purpose of multi‐objective optimization is to search the
feasible parameter space and find those parameter solutions
that are Pareto optimal.

Among many multi‐objective optimization algorithms
that have been presented and successfully applied, SPEA2
(Zitzler et al., 2001) was adopted here to conduct parameter
estimation in the SWAT model according to the comparison
of several state‐of‐the‐art multi‐objective optimization algo‐
rithms (Tang et al., 2006). In order to give a clear description
of SPEA2, several new symbols are defined: tP  is the external
archive at generation t, which is used to store the parameter
solutions with high fitness values; N  is the external archive
size; and A is the Pareto optimal set. SPEA2 applies different
procedures than the single‐objective GA to calculate the fit‐



2043Vol. 51(6): 2039-2049

ness of each parameter solution and keep the diversity of can‐
didate parameters. The basic procedures for implementing
SPEA2 are illustrated in figure 4 and the following sections
(Zitzler et al., 2001):

Initialization.  Generate an initial population P0 and
create the empty archive (external repository) Θ=0P . Set t�=
0.

Fitness assignment. In order to calculate fitness values of
chromosomes in Pt and tP , three major steps need to be imple‐
mented. First, each chromosome i in the archive tP  and the
population Pt is assigned a strength value S(i) representing
the number of solutions it dominates. Second, on the basis of
S values, the raw fitness R(i) of a chromosome i is calculated
as:

∑
+∈

=
ijPPj tt

jSiR
f,

)()(

where R(i) = 0 represents a non‐dominated chromosome,
while a high R(i) value means that i is dominated by many
chromosomes. Third, the raw fitness R(i) needs to be adjusted
to incorporate the density of each chromosome, in case many
chromosomes have the same raw fitness when most chromo‐
somes do not dominate each other. The density of each
chromosome is calculated using the kth nearest neighbor
method, which defines the density of a chromosome as a
function of its distance to the kth nearest neighbors in the ob‐
jective space (�i k) (Zitzler et al., 2001). In SPEA2, k is set

equal to NN + . Then the density of each chromosome i is
defined as:

2

1
)(

+σ
=

k
i

iD

where the number “2” is added to the denominator to ensure
that D(i) is less than 1 (Zitzler et al., 2001). Finally, adding
D(i) to the raw fitness value R(i) yields each chromosome's
fitness F(i) = R(i) + D(i).

Environmental selection. Copy all Pareto optimal
chromosomes in Pt and tP  to 1+tP . If the size of 1+tP  exceeds

N , then reduce 1+tP  by means of truncating the non‐
dominated chromosomes with less fitness F(i), otherwise if
the size of 1+tP  is less than N , then fill 1+tP  with best domi‐

nated chromosomes in Pt and tP .
Termination: If t > T or another stopping criterion is satis‐

fied, then set A to the set of parameter vectors represented by
the non‐dominated chromosomes in 1+tP .

Mating selection and variation. Perform tournament
selection (Goldberg, 1989) with replacement on 1+tP  to fill the
mating pool. Apply crossover and mutation operators to the
mating pool, and set 1+tP  to the resulting population. Incre‐
ment the generation counter (t = t + 1), and go to the fitness
assignment step.

EXPERIMENTAL TEST DESIGN
The optimization objective functions are indicators of

agreement between the measured and simulated series of the
variable of interest. The sum of squares of residuals (SSR) is
an often applied objective function in calibrating hydrologic
models (Van Liew et al., 2007). In this study, the Nash‐Sut‐
cliffe efficiency (Ens), a normalized form of SSR, was se-

Figure 4. Flowchart of SPEA2.

lected. The formula to calculate Ens is (Nash and Sutcliffe,
1970):
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where Pi is the model simulated value, Oi is the observed
data, O  is the mean for the observed data, and i = 1, 2, ..., n,
where n is the total number of pairs of simulated and observed
data. Ens indicates how well the plot of the observed value
versus the simulated value fits the 1:1 line, and ranges from
−∞  to 1 (Legates and McCabe, 1999).

In order to understand the effect of single‐objective and
multi‐objective  parameter optimization schemes on the re‐
sulting calibrated parameter values and simulated hydro‐
graphs, several GA optimization schemes and a
multi‐objective  optimization scheme (SPEA2) were applied.
Specifically, four GA and four SPEA2 optimization cases
were applied with the Ens objective function: GA applied at
Salmon (GA‐sal), GA applied at Tolgate (GA‐tol), GA ap‐
plied at the outlet (GA‐out), and GA applied for the sum of
all (GA‐sum). SPEA2 can optimize the Ens objective func‐
tions at Salmon, Tolgate, and Outlet simultaneously and find
a set of Pareto optimal solutions; therefore, the objective
function optimized by SPEA2 is a vector, that is [Ens‐Salmon,
Ens‐Tolgate, Ens‐Outlet, and Ens‐Sum]. Several representa‐
tive Pareto optimal solutions were selected for analysis and
comparison: SPEA2‐sal, SPEA2‐tol, SPEA2‐out, and
SPEA2‐sum denote the parameter solutions with the best ob‐
jective function values at Salmon, Tolgate, Outlet, and the
sum of all three monitoring stations, respectively. The com‐
parison between the different optimization schemes was
mainly based on the eight representative parameter sets (GA‐
sal, GA‐tol, GA‐out, GA‐sum, SPEA2‐sal, SPEA2‐tol,
SPEA2‐out, and SPEA2‐sum). The GA and SPEA2 algo‐
rithms are stochastically based. Based on previous studies of
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Figure 5. The best or Pareto optimal objective function values at Salmon, Tolgate, and Outlet obtained by GA‐sal, GA‐tol, GA‐out, GA‐sum, and
SPEA2.

applying evolutionary optimization algorithms for SWAT
(e.g., van Griensven, and Bauwens. 2003; Tolson and Shoe‐
maker, 2007; Zhang et al., 2008a), all the optimization
schemes were run as 10 trials (10,000 model evaluations for
each trial) to obtain the optimized parameter solutions and
objective function values. The best results obtained by the 10
trials were used as the final parameter solutions for each opti‐
mization scheme.

RESULTS AND DISCUSSION
OPTIMIZED OBJECTIVE FUNCTION VALUES, PARAMETER
SETS, AND HYDROGRAPHS

The objective function values at Salmon, Tolgate, and
Outlet obtained by the GA‐sal, GA‐tol, GA‐out, GA‐sum,
and SPEA2 schemes are shown in figure 5. For each single‐
objective optimization scheme, a best objective function val‐
ue was obtained, while 96 Pareto optimal objective function
vectors were obtained for the multi‐objective optimization
scheme. For each objective function, the values obtained by
the different optimization schemes are listed in table 3. Simu‐
lations demonstrated that the single‐objective optimization
schemes can identify better values for each separate objec‐
tive function than the multi‐objective optimization scheme.
This means that the objective function vectors found by each
single optimization scheme are not dominated by other ob‐
jective function vectors obtained by SPEA2, and can be add‐
ed to the Pareto front found by SPEA2. Although the
single‐objective  optimization schemes can identify better re‐
sults for each separate objective function, they need to be run
several times separately. On the other hand, with one trial,
SPEA2 can find multiple objective function vectors that per‐
form as well as the parameter solutions obtained by GA.
These results are in agreement with the “no free lunch theo‐
rem,” which states that “for any optimization algorithm, any
elevated performance over one class of problems is exactly
paid for in performance over another class” (Wolpert and Ma‐
cready, 1997). For example, GA‐sum achieved better objec‐

tive values for Ens‐Tolgate and Ens‐Sum, while SPEA2‐Sum
obtained better results for Ens‐Salmon, and Ens‐Outlet. For
parameter calibration, the single‐objective and multi‐
objective optimization schemes can find parameter solutions
that are not inferior to each other.

Test results demonstrated that a substantial difference ex‐
ists between the objective function values at different moni‐
toring sites obtained by each single‐objective optimization
scheme. For example, GA‐sal obtained an Ens value of 0.854
at Salmon, while GA‐tol obtained an Ens value of -0.361 at
Salmon. Optimizing the objective function value at one site
can lead to a serious bias of objective function values at other
sites. Similarly, the multi‐objective optimization scheme can
also obtain a wide range of objective function values at each
monitoring site. For example, the range of objective function
values at Salmon, Tolgate, Outlet are [0.097, 0.827], [0.02,
0.599], and [0.471, 0.763], respectively. Given the substan‐
tial variation of the optimized objective function values, the
corresponding parameter values were expected to scatter
within the feasible space. The normalized parameter values
obtained by different optimization schemes are shown in fig‐
ure 6. All of the parameter values were normalized between
their lower and upper bounds so that they ranged between
0�and 1. As expected, the value of each parameter varied sub‐
stantially depending on the selected optimization scheme.

Table 3. Nash‐Sutcliffe values obtained by different
parameter optimization schemes at Salmon,

Tolgate, and Outlet for the calibration period.
Salmon Tolgate Outlet Sum

GA‐sal 0.85 0.02 0.69 1.57
GA‐tol ‐0.36 0.62 0.25 0.51
GA‐out 0.50 0.29 0.78 1.57
GA‐sum 0.62 0.44 0.74 1.80

SPEA2‐sal 0.83 0.03 0.677 1.57
SPEA2‐tol 0.13 0.60 0.47 1.20
SPEA2‐out 0.55 0.18 0.76 1.49
SPEA2‐sum 0.70 0.31 0.74 1.75
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Figure 6. Normalized parameter values obtained by SPEA2 and different GA‐based single‐objective optimization schemes (parameter codes are listed
in table 2).
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Figure 7. Simulated hydrographs using parameter sets calibrated by different optimization schemes (thick solid lines are the observed hydrograph;
thin solid lines are the simulated hydrographs using eight representative parameter sets calibrated by GA and SPEA2 optimization schemes).

The range of the initial CN was 45 to 60. For the single‐
objective optimization schemes, the optimized parameter
values varied from each other. For example, the normalized
CN values are 0.99, 0.12, 0.54, and 0.67 for GA‐sal, GA‐tol,
GA‐out, and GA‐sum, respectively. For SPEA2, the range of
CN values obtained by the 96 Pareto optimal parameter sets

is [0.38, 0.99]. These differences between the optimized pa‐
rameter values reveal that the relationships between stream‐
flow and topography, land use, and precipitation are different
for each subwatershed, which results in a specific parameter
solution for a given subwatershed.
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Table 4. Kolmogorov‐Smirnov test results between the hydrographs simulated using different parameter solutions
obtained by different optimization schemes at Salmon, Tolgate, and Outlet for the calibration period.

GA_sal GA_tol GA_out GA_sum SPEA2‐sal SPEA2‐tol SPEA2‐out SPEA2‐sum

Salmon

GA_sal ‐‐
GA_tol 1 ‐‐
GA_out 1 1 ‐‐
GA_sum 1 1 0 ‐‐
SPEA2‐sal 0 1 1 1 ‐‐
SPEA2‐tol 1 1 1 1 1 ‐‐
SPEA2‐out 1 1 0 0 1 1 ‐‐
SPEA2‐sum 1 1 0 1 0 1 0 ‐‐

Tolgate

GA_sal ‐‐
GA_tol 1 ‐‐
GA_out 1 1 ‐‐
GA_sum 1 1 0 ‐‐
SPEA2‐sal 0 1 1 1 ‐‐
SPEA2‐tol 1 0 1 1 1 ‐‐
SPEA2‐out 1 1 1 1 1 1 ‐‐
SPEA2‐sum 1 1 1 1 1 1 1 ‐‐

Outlet

GA_sal ‐‐
GA_tol 1 ‐‐
GA_out 1 1 ‐‐
GA_sum 1 1 0 ‐‐
SPEA2‐sal 0 1 1 1 ‐‐
SPEA2‐tol 1 0 1 1 1 ‐‐
SPEA2‐out 1 1 0 0 1 1 ‐‐
SPEA2‐sum 1 1 0 1 1 1 1 ‐‐

Note: 1 represents that there is a significant difference between the two simulated hydrographs at a significant level of 0.05, while 0 represents a lack of
significance (α = 0.05).

The eight representative parameter sets obtained by both
single and multi‐objective optimization schemes were used
to simulate the hydrographs at Salmon, Tolgate, and Outlet
(fig. 7). Considerable variation among the optimization
schemes is apparent in the simulated hydrograph for each of
these stations (fig. 7). The two‐sample Kolmogorov‐Smirnov
test (Massey, 1951) was used to test whether there is a statisti‐
cally significant difference between the simulated hydro‐
graphs using the parameter sets obtained by different
optimization schemes (table 4). Of the total 28 comparisons
at each monitoring site, 21, 25, and 22 pairs of hydrographs
are significantly different from each other. This indicates that
the selection of parameter optimization schemes can lead to
significantly different simulated hydrographs, which may
have important implications for water resources manage‐
ment investigations.

MODEL VALIDATION USING PARAMETERS OBTAINED BY GA
AND SPEA2 OPTIMIZATION SCHEMES

After calibration, the optimized parameter sets need to be
validated using another independent set of observed data.
Observed daily streamflow data (1970‐1972) at Salmon, Tol‐
gate, and Outlet was used to validate the optimized parameter
sets obtained by different optimization schemes. Figure 8
shows the simulated and observed hydrographs at Salmon,
Tolgate, and Outlet. The hydrographs simulated by different
parameter sets exhibit moderate variation from each other for
the validation period. Based on the two‐sample Kolmogorov‐
Smirnov test, 20, 26, and 24 pairs of hydrographs are signifi‐
cantly different from each other (table 5), which indicates
that the selection of different parameter sets has significant
influence on the simulation results for water resources man‐
agement investigations.

The evaluation coefficients (table 6) demonstrated that
GA‐sum and SPEA2‐sum performed better for the validation
than the other parameter calibration schemes. If only one spe‐
cific objective function was emphasized in the calibration
process, the calibrated parameter sets tended to achieve rela‐
tively better performance for that specific objective function
at the cost of the performance of the other objective func‐
tions. For example, GA‐tol and SPEA2‐tol achieved a value
of Ens‐Tolgate larger than 0.25, while Ens‐Salmon was less
than -0.35. In addition, the emphasis on one specific objec‐
tive function tends to calibrate the model parameters so that
they fit that specific objective function, while ignoring im‐
portant information contained in other objective functions.
On the contrary, GA‐sum and SPEA2‐sum consider all objec‐
tive functions and search for a compromise among these dif‐
ferent objective functions. Given the uncertainties associated
with the observed data and model structure, the overfit to one
specific objective function leads to worse performance dur‐
ing the validation period than the calibration period. For ex‐
ample, GA‐sum and SPEA2‐sum achieved better Ens values
at all three monitoring sites than other optimization schemes
that only emphasized one specific objective function during
calibration.  Hence, the better performance of GA‐sum and
SPEA2‐sum compared to other optimization schemes
stresses the importance of collecting more detailed spatially
distributed data to calibrate a distributed hydrologic model.

Often hydrologic conditions of a validation period are dif‐
ferent from those of a calibration period, which may lead to
differences in performance of the parameter solutions for the
respective periods. For example, GA‐sum achieved the high‐
est Ens values based on the sum of the three sites for the cal‐
ibration period, but SPEA2‐sum performed better than
GA‐sum for the validation period. The 92 Pareto optimal pa-
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Figure 8. Simulated hydrographs using parameter sets calibrated by different optimization schemes (thick solid line is the observed hydrograph;
thin solid lines are the simulated hydrographs using eight representative parameter sets calibrated by GA and SPEA2 optimization schemes).

Table 5. Kolmogorov‐Smirnov test results between the hydrographs simulated using different parameter solutions
obtained by different optimization schemes at Salmon, Tolgate, and Outlet for the validation period.

GA_sal GA_tol GA_out GA_sum SPEA2‐sal SPEA2‐tol SPEA2‐out SPEA2‐sum

Salmon GA_sal ‐‐
GA_tol 1 ‐‐
GA_out 1 1 ‐‐
GA_sum 1 1 1 ‐‐
SPEA2‐sal 1 1 0 0 ‐‐
SPEA2‐tol 1 0 1 1 1 ‐‐
SPEA2‐out 1 1 0 1 1 0 ‐‐
SPEA2‐sum 1 1 0 0 0 1 1 ‐‐

Tolgate GA_sal ‐‐
GA_tol 1 ‐‐
GA_out 1 1 ‐‐
GA_sum 1 1 1 ‐‐
SPEA2‐sal 1 1 1 1 ‐‐
SPEA2‐tol 1 0 1 1 1 ‐‐
SPEA2‐out 1 1 1 1 1 1 ‐‐
SPEA2‐sum 1 1 1 1 0 1 1 ‐‐

Outlet GA_sal ‐‐
GA_tol 1 ‐‐
GA_out 1 1 ‐‐
GA_sum 1 1 1 ‐‐
SPEA2‐sal 1 1 1 1 ‐‐
SPEA2‐tol 1 0 1 1 0 ‐‐
SPEA2‐out 1 1 1 1 1 1 ‐‐
SPEA2‐sum 1 1 1 1 0 0 1 ‐‐
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Table 6. Objective values obtained by different parameter optimization
schemes at Salmon, Tolgate, and Outlet for the validation period.

Salmon Tolgate Outlet Sum

GA‐sal 0.30 0.01 0.56 0.88
GA‐tol ‐0.48 0.35 0.43 0.30
GA‐out 0.08 0.12 0.62 0.82
GA‐sum 0.32 0.51 0.73 1.56

SPEA2‐sal 0.29 0.01 0.59 0.89
SPEA2‐tol ‐0.37 0.26 0.45 0.33
SPEA2‐out 0.20 0.24 0.63 1.07
SPEA2‐sum 0.44 0.49 0.73 1.65

rameter sets (except for SPEA2‐sal, SPEA2‐tol, SPEA2‐out,
and SPEA2‐sum) achieved by SPEA2 were also evaluated for
the validation period. Some of the parameter sets outper‐
formed the eight representative parameter solutions obtained
during calibration. The best validation objective function
values are 0.46 at Salmon, 0.52 for Tolgate, 0.73 for Outlet,
and 1.68 for the sum, respectively. These values are better
than those listed in table 5. Among the 96 Pareto optimal pa‐
rameter sets, 22 of them achieved the sum of three objective
function values larger than 1.55, and two of them achieved
better results than GA‐sum for all three objective functions.
These validation results demonstrate that the multiple Pareto
optimal parameter sets obtained by SPEA2 may contain
some useful information that GA did not identify. The multi‐
ple Pareto optimal parameter sets can also allow practitioners
to use different ways to select reasonable parameter values.
If only one “most likely” parameter set is used to forecast or
simulate streamflow, then graphical visualization techniques
(Gupta et al., 1998) and expert knowledge (Khu and Madsen,
2005) can be applied to assist the parameter selection.

SUMMARY
With the increasing availability of spatial hydrologic data

and the growing popularity of complex, semi‐physically
based distributed hydrologic models, use of the spatial data
to calibrate and validate hydrologic models is becoming an
increasingly important issue. In this study, different opti‐
mization schemes were applied to optimize a distributed
hydrologic model, SWAT, using observed streamflow data at
three monitoring sites within the Reynolds Creek Experi‐
mental Watershed in Idaho. The results demonstrated that
different optimization schemes can lead to substantially dif‐
ferent objective function values, parameter solutions, and
corresponding simulated hydrographs. This in turn indicates
that the selection of optimization schemes can significantly
impact how well hydrologic models simulate actual stream‐
flow. Parameters estimated by optimizing the objective func‐
tion at three monitoring sites consistently produced better
goodness‐of‐fit than those obtained through optimizing the
objective function at a single monitoring site, which stresses
the importance of having spatially distributed data to conduct
such simultaneous multi‐site calibration.

When applied with multi‐site data, the single‐objective
(GA) method can identify better parameter solutions in the
calibration period, but the multi‐objective (SPEA2) method
performed better in the validation period. The multi‐
objective optimization method, however, can identify multi‐
ple Pareto optimal parameter solutions, which allows
hydrologic practitioners to use expert knowledge and visual

graphic analysis to select one preferred solution. The multi‐
objective optimization method also eliminates the need for
multiple runs by determining the optimal values simulta‐
neously. Overall, the application of different optimization
schemes in the Reynolds Creek Experimental Watershed
demonstrated that the single‐objective (GA) and multi‐
objective (SPEA2) optimization methods both produce rea‐
sonable results for multi‐site calibration and validation of the
SWAT model. Results also supported the “no free lunch theo‐
rem” (Wolpert and Macready, 1997) regarding optimization
algorithms. Each optimization scheme has its strengths and
weaknesses and may perform better under one set of hydro‐
logic conditions as compared to another; therefore, a method
to combine the strengths of different optimization schemes
deserves further research in the future.
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