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Abstract:

Obtaining representative meteorological data for watershed-scale hydrological modelling can be difficult and time consuming.
Land-based weather stations do not always adequately represent the weather occurring over a watershed, because they can be far
from the watershed of interest and can have gaps in their data series, or recent data are not available. This study presents a
method for using the Climate Forecast System Reanalysis (CFSR) global meteorological dataset to obtain historical weather data
and demonstrates the application to modelling five watersheds representing different hydroclimate regimes. CFSR data are
available globally for each hour since 1979 at a 38-km resolution. Results show that utilizing the CFSR precipitation and
temperature data to force a watershed model provides stream discharge simulations that are as good as or better than models forced
using traditional weather gauging stations, especially when stations are more than 10 km from the watershed. These results further
demonstrate that adding CFSR data to the suite of watershed modelling tools provides new opportunities for meeting the challenges of
modelling un-gauged watersheds and advancing real-time hydrological modelling. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

A common challenge in modelling watershed hydrology
is obtaining accurate weather input data (Kouwen, et al.,
2005; Mehta et al., 2004), almost always one of the most
important drivers for watershed models (Obled et al.,
1994; Bleecker et al., 1995). Weather is often monitored
at locations outside the watershed to be modelled,
sometimes at a long distance from the watershed. As a
result, the available records may not meaningfully
represent the weather actually occurring over a watershed.
An additional complication is that rain gauge data are
effectively point measurements, which may represent
precipitation poorly across a watershed, particularly if
there are large hydroclimatic gradients (WMO, 1985;
Ciach, 2003). Moreover, weather records are seldom
complete, which requires substituting other measurements
or incorporating some sort of ‘estimated’ weather
conditions. To remedy this, some researchers have
utilized radar data to provide precipitation inputs in
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hydrological modelling studies, especially for modelling
flood events (Ogden and Julien, 1994; Habib et al., 2008),
but these data pose their own challenges including
discriminating different forms of precipitation such as
hail, snow and rainfall and determining the appropriate
relationship between radar reflectivity and rain rate
(Villarini and Krajewski, 2010), not to mention that radar
data are only available for a small fraction of the world’s land
surface. Thus, there is a need to consider additional methods
to estimateweather conditions forwatershed-scalemodelling.
One possibility is to use multiyear global gridded

representations of weather known as reanalysis datasets,
of which there are several (Table I). Ward et al. (2011)
found that the National Centers for Environmental Predic-
tion (NCEP)/National Center for Atmospheric Research
(NCAR) and the European Centre for Medium-Range
Weather Forecasts’ (ECMWF) 40-year (updated version of
the ECMWF 15-year) datasets had significant variability
between the reanalysis precipitation fields and suggested
that higher spatial resolution data are likely better suited to
capture higher frequency events when modelling small-
sized to moderate-sized watersheds. In order to model these
small-sized to moderate-sized watersheds, we utilized three



Table I. Reanalysis datasets available to this project from the NCAR CISL RDA

Reanalysis dataset (CISL ID) Date range Time step (h) PPT field Res Coverage

NCEP/NCAR (ds090.0) 1948–2010 6 PPT Rate 2.5° (~290 km) Global
NCEP/DOE R2 (ds091.0) 1979–2012 6 PPT Rate 1.875° (~209 km) Global
NCEP N. American Regional (ds608.0) 1979–2012 3 PPT Rate ~32 km (~0.25°) North America
NCEP 51-Year Hydrological (ds607.0) 1948–1998 3 Total PPT 0.125° (~15 km) Continental USA
ECMWF 15 Year (ds115.5) 1979–1993 6 Strat. + Conv. PPT 1.125° (~130 km) Global
ECMWF 40Year (ds117.0) 1957–2002 6 Strat. + Conv. PPT 1.125° (~130 km) Global
ECMWF Interim (ds627.0) 1979–2012 6 Strat. + Conv. PPT 0.703° (~82 km) Global
CFSR (ds093.1) 1979-present 1 PPT Rate 0.3125° (~38 km) Global
Japanese 25-Year (ds625.0) 1979–2011 6 Total PPT 1.125° (~130 km) Global

Note: All datasets include temperature. Japanese 25year, ECMWF 40Year, and ECMWF Interim reanalysis are restricted datasets not available to the public.
CISL, Computational and Information Systems Laboratory; RDA, Research Data Archive; NCEP/NCAR, National Centers for Environmental
Prediction; DOE, Department of Energy; PPT Rate, precipitation rate; Strat. + Conv., stratiform plus convective forms of precipitation; ECMWF,
European Centre for Medium-Range Weather Forecasts; CFSR, Climate Forecast System Reanalysis.

D. R. FUKA ET AL.
criteria for dataset selection: (i) an openly available global
reanalysis dataset that included temperature and precipita-
tion rate; (iii) a spatial resolution on the order of 30 km; and
(iii) the period of record should include adequate historical
coverage to allow model calibration and validation and
extend to the present. The only dataset that met all three of
the aforementioned criteria was the NCEP Climate Forecast
System Reanalysis (CFSR) dataset (Table I).
The CFSR dataset consists of hourly weather forecasts

generated by the National Weather Service’s NCEP
Global Forecast System. Forecast models are reinitialized
every 6 h (analysis hours = 0000, 0600, 1200 and 1800
UTC) using information from the global weather station
network and satellite-derived products. At each analysis
hour, the CFSR includes both the forecast data, predicted
from the previous analysis hour, and the data from the
analysis utilized to reinitialize the forecast models. The
horizontal resolution of the CFSR is 38 km (Table I; Saha
et al., 2010). This dataset contains historic expected
precipitation and temperatures for each hour for any land
location in the world. Moreover, as the precipitation is
updated in near-real time every 6 h, these data can provide
real-time estimates of precipitation and temperature for
hydrologic forecasting.
The objective of this study was to determine whether

CFSR-derived weather data can be reliably used as input
data instead of traditional weather station data in
simulating discharge from a watershed. We performed
two studies to evaluate the utility of using CFSR data and
traditional weather station data to simulate watershed
discharge across a range of hydroclimate regimes. The
first study utilized a watershed model as a filter to
compare watershed model discharge predictions to
observed discharge using models forced with both the
CFSR and weather station data. The second study
explores how model performance behaves as CFSR and
weather station data are derived from progressively more
distant locations. These two analyses elucidate under
Copyright © 2013 John Wiley & Sons, Ltd.
what conditions CFSR or land-based weather station are
the most appropriate datasets for watershed modelling.
Additionally, the second analysis provides information
about how station density and/or distance influences
watershed model results.
METHODS AND SITE DESCRIPTIONS

For these studies, we assume that the weather data that
best correlate with watershed streamflow is the best
representation of the weather occurring over the water-
shed. Unfortunately, traditional cross-correlation analysis
between the weather variables and resulting streamflow is
physically meaningless, as there are many linear and
nonlinear systems between weather events and the
resulting streamflow, as is often the case with many
real-world time-series data (Podobnik and Stanley, 2008).
Therefore, the description of the mutual correlation
between the weather forcing variables and the resultant
streamflow is presented using a hydrological model acting
as a filter between the physical forcing variables and the
resulting streamflow response, similar to the methods
proposed in Podobnik and Stanley (2008). This eliminates
the need for traditional methods of split-sample calibra-
tion and validation periods.
To perform these transformations, both studies utilized

an adaptation of the Soil and Water Assessment Tool
(SWAT) model (e.g. Arnold et al., 1998) that has been
ported to the R modelling language and available through
the CRAN repository (R Core Team, 2013). The
SWATmodel package (Fuka et al., 2013) was utilized
because it is widely implemented operationally as well as
in research, and the integration into the R modelling
language allowed for us to automate the optimization
process using powerful tools such as the differential
evolution optimization (DEoptim) package (Ardia and
Mullen, 2009; Fuka et al., 2012) also freely available through
Hydrol. Process. (2013)



USING CFSR AS WEATHER INPUT DATA FOR WATERSHED MODELS
the CRAN repositories. The hydrological subroutines in
SWAT utilize a combination of empirical and process-based
modelling approaches. Although SWAT is designed to
predict a wide array of soil and water quality and flux
characteristics, we only considered stream discharge in these
studies. Additionally, because we are running this model in a
variety of hydroclimatic regimes, and specific hydrological
process vary among our testwatersheds,we utilize the SWAT
model solely as a response function or nonlinear scaling
transformation, i.e. we are only trying to predict thewatershed
response to the weather input and not on validating specific
internal model processes. Thus, we assumed that the model
results for any given weather dataset used to force the model
are an indicator of the relative representation of the weather
occurring in the watershed (i.e. better model performance
statistics points towards better weather representation over
the watershed).
We also recognize that traditional SWAT watershed

modelling initializations would result in many calibration
degrees of freedom [e.g. hundreds to thousands of
hydrological response units (HRUs)], and as stated
earlier, the point of this work is to indicate which dataset
better represents weather occurring over a watershed and
not on over-fitting the watershed model. Thus, we
drastically simplify the watershed conceptualization,
effectively reducing the number of calibration parameters
or degrees of freedom in the calibration, and thus reduce
over parameterization or over-fitting issues. To do this,
each watershed is initialized with three equal-sized
Table II. Calibrated parameters used for differential evolution opti
percent deviation

Variable Definition

SFTMP Snowfall temperature (°C)
SMTMP Snow melt base temperature (°C)
SMFMX Melt factor for snow on 21 June (mm H
SMFMN Melt factor for snow on 21 December (m
TIMP Snow pack temperature lag factor
GW_DELAY Groundwater delay (day)
ALPHA_BF Baseflow alpha factor (day)
SURLAG Surface runoff lag time (day)
GWQMN Threshold depth of water in the shallow
LAT_TTIME Lateral flow travel time (day)
ESCO Soil evaporation compensation factor
EPCO Plant uptake compensation factor
CN2 Initial SCS CN II value
Depth Soil layer depths (mm)
BD Bulk density moist (g/cm3)
AWC Average available water (mm/mm)
KSAT Saturated conductivity (mm/h)
RCHRG_DP Deep aquifer percolation fraction
REVAPMN Depth of water in the aquifer for revap (
GW_REVAP Groundwater ‘revap’ coefficient

a ‘Replace’ indicates that values were replaced within an initial range publish
adjusting the base initialization default variables by a certain percentage.

Copyright © 2013 John Wiley & Sons, Ltd.
sub-basins, idealized by three HRUs in each sub-basin.
Each HRU was characterized by the calibration param-
eters in Table II. Dividing the watersheds into sub-basins
facilitated stream channel routing within SWAT, which is
important in any watersheds with a hydrologic delay
greater than the model time step (e.g. 1 day). This creates
a quasi-lumped model with parameterizations for surface
runoff, interflow and ground water responses, as well as
delay functions for in-stream routing. While this is an
unconventional SWAT setup, three sub-basins are the
minimum initialization that allows lumped surface
responses combined with independent stream response
delay functions.
In study 1, two watersheds (Table III, study 1) were

selected that had previously published SWAT model
results using weather data from nearby stations as input
data (e.g. Easton et al., 2008; White et al., 2011). SWAT
model performance using these weather datasets was
compared to SWAT model runs using CFSR-derived
weather data. This first study was performed to (i) evaluate
how watershed models forced with CFSR-derived
weather data compare to a typical modelling study
where modellers aggregate multiple weather stations to
derive or fill gaps in the weather data that are used in the
watershed model; and (ii) determine how well the
unconventional SWAT setup used in this study would
represent results from traditional watershed modelling
that uses high-resolution input data to initialize more
distributed processes.
mization, with the optimization method and parameter range, or
for optimization

Methoda Range/percent

Replace �5–5 °C
Replace �5–5 °C

2O/°C-day) Replace 0–5 °C
m H2O/°C-day) Replace 0–5 °C

Replace 0.01–1 °C
Replace 1–180 days
Replace 1–180 days
Replace 1–180 days

aquifer (m) Replace 1–200mm
Replace 1–180 days
Replace 0.2–0.99
Replace 0.2–0.99
Replace 65–85
Percent 50–150%
Percent 50–150%
Percent 50–150%
Percent 50–150%
Replace 0–1.0

mm) Replace 0–500mm
Replace 0–0.2

ed in the literature, and ‘percent’ indicates that values were determined by

Hydrol. Process. (2013)



Table III. Table of watershed basin identifiers, characteristics and locations

Name
USGS
gauge

Area
(km2)

K-Ga

class
Latitude/
longitude

Study
period

Gauge
elevation (m) Location

Study 1 Town Brook 01421618 36.6 Dfb 42.36/�74.66 1998–2004 784 Hobart, NY, USA
Gumera NAb 1200 Cwb 11.84/37.63 1995–2003 1800 Near Bahir Dar, Ethiopia

Study 2 Andreas Creek 10259000 22.1 Csa 33.76/�116.55 2000–2010 380 Palm Springs, CA, USA
Tesuque Creek 08302500 30.0 BSk 35.74/�105.91 2000–2010 2170 Santa Fe, NM, USA
Cross River 01374890 43.8 Dfa 41.26/�73.60 2000–2010 158 Cross River, NY, USA

a The Köppen-Geiger climate classification (Peel et al., 2007): BSk= semiarid, steppe, cold; Csa =Mediterranean, temperate, dry summer, hot summer;
Dfb = humid, cold, without dry season, warm summer; Dfa = humid, cold, without dry season, cold summer; Cwb= temperate, dry winter, warm summer;
http://people.eng.unimelb.edu.au/mpeel/koppen.html.
b Streamflow for the Gumara made available from the Ethiopian Ministry of Water Resources at http://www.mowr.gov.et/.

Table IV. Table of GHCN weather stations used in study 2 for (a) Cross River, (b) Tesuque Creek and (c) Andreas Creek, including
Dist as well as %Miss, and TofOb in local time

Station name GHCN ID Dist (km) %Miss TofOb

(a) Cross River, Cross River, NY, USA
Danbury Municipal Airport, CT, USA USW00054734 15.4 3.2 24
West Point, NY, USA USC00309292 33.4 0.9 7
Bridgeport Sikorsky Memorial Airport, CT, USA USW00094702 �41.2 0.0 24
New York LaGuardia Airport, NY, USA USW00014732 �58.3 0.0 24
New York J F Kennedy International Airport, NY, USA USW00094789 �70.3 0.0 24
Falls Village, CT, USA USC00062658 79.0 1.8 7
Oak Ridge Reservoir, NJ, USA USC00286460 79.5 2.3 8
Newark International Airport, NJ, USA USW00014734 �79.9 0.0 24
Bakersville, CT, USA USC00060227 81.6 0.1 7
Burlington, CT, USA USC00060973 81.9 2.9 7
Canoe Brook, NJ, USA USC00281335 �85.4 2.4 8
Rock Hill 3 SW, NY, USA USC00307210 92.1 1.6 8

(b) Tesuque Creek, Sante Fe, NM, USA
Santa Fe 2, NM, USA USC00298085 14.8 8.4 20
Glorieta, NM, USA USC00293586 21.4 4.9 16
Santa Fe Co Municipal Airport, NM, USA USW00023049 21.5 2.0 24
Pecos National Monument, NM, USA USC00296676 28.8 1.0 16
Espanola, NM, USA USC00293031 31.3 12.2 6
Los Alamos, NM, USA USC00295084 39.8 3.3 24
Gascon, NM, USA USC00293488 44.6 5.4 17

(c) Andreas Creek, Palm Springs, CA, USA
Palm Springs Regional Airport, CA, USA USW00093138 8.6 2.1 24
Palm Springs, CA, USA USC00046635 9.3 2.3 16
Hemet, CA, USA USC00043896 �36.2 0.2 16
Desert Resorts Regional Airport, CA, USA USW00003104 38.2 0.4 24
Borrego Desert Park, CA, USA USC00040983 59.9 0.6 8
Henshaw Dam, CA, USA USC00043914 �61.7 1.2 7
Twentynine Palms, CA, USA USC00049099 62.5 1.4 15
Redlands, CA, USA USC00047306 �67.4 1.8 14
Carlsbad Mcclellan Palomar Airport, CA, USA USW00003177 �97.5 1.9 24

Negative distances indicate stations closer to the ocean for Andreas Creek and Cross River.
GHCN, Global Historical Climatology Network; Dist, distance from USGS streamflow gage; %Miss, percentage of days with missing weather data;
TofOb, time of observation in local time.

D. R. FUKA ET AL.
In study 2, three watersheds (Table III, study 2) were
selected that had a variable density of weather stations
located at increasing distances from the watershed outlet
(Table IV). Discharge was simulated using SWAT
models forced using both CFSR and weather station
Copyright © 2013 John Wiley & Sons, Ltd.
data. This second study evaluated how model perfor-
mance in predicting discharge may diminish with
increasingly distant weather stations and determines
how CFSR-based results would diminish if interpolated
at these same distances from the watershed.
Hydrol. Process. (2013)

http://www.mowr.gov.et/.


USING CFSR AS WEATHER INPUT DATA FOR WATERSHED MODELS
Study 1

Two watersheds were chosen for this study: the Town
Brook watershed (37 km2) located in the Catskill
Mountains, NY, USA, and the Gumera Watershed
(1200 km2) in the headwaters of the Blue Nile River in
Ethiopia (Table III). Both watersheds have been modelled
previously using SWAT (e.g. Easton et al., 2008, 2011;
White et al., 2011). The weather station dataset for the
Town Brook watershed was taken directly from the
Easton et al. (2008) study and included data from
the weather station at Stamford, NY, located just outside
the northern watershed boundary, with gaps filled using
weather data from the Delhi, NY, and Walton, NY,
weather stations located 25 and 45 km from the outlet of
the watershed, respectively. The Town Brook weather
dataset was developed over time by several researchers
studying a wide variety of models (e.g. Mehta et al.,
2004; Agnew et al., 2006; Lyon et al., 2006;
Schneiderman et al., 2007; Easton et al., 2008; Shaw
and Walter, 2009; Easton et al., 2011). The weather
station dataset for the Gumera watershed was taken
directly from the White et al. (2011) study and was
originally obtained from the National Meteorological
Agency of Ethiopia for the three closest weather stations,
Debre Tabor, Bahir Dar and Addis Zemen.

Study 2

For the second study, we selected three small
(10–20 km2) watersheds that represented distinct US
hydroclimatic regions (Karl and Koss, 1984; Table III)
and that had several weather stations within a 100-km
radius from the outlet with nearly complete daily records
(Table IV). One aspect of this investigation was to
determine the distance from a small catchment at which
land-based weather stations data produce worse stream
discharge estimates than data from CFSR.
All weather station data for this study were

downloaded using the National Climatic Data Center
Table V. Table of NSE for the CFSR interpolated to the centr
meteorological weather

Name Location
CFSR
Center

Clos
w

Town Brook Hobart, NY, USA 0.63
Gumera Bahir Dar, Ethiopia 0.71
Andreas Creek Palm Springs, CA, USA 0.71
Tesuque Creek Santa Fe, NM, USA 0.49
Cross River Cross River, NY, USA 0.67

Best meteorological weather is either a composite of stations in the case of T
Creek, Tesuque Creek and Cross River.
NSE, Nash–Sutcliffe efficiency; CFSR, Climate Forecast System Reanalysis
a Closest meteorological station to the centre of the watershed.
b Best performing meteorological station weather, or combination of weathe

Copyright © 2013 John Wiley & Sons, Ltd.
(NCDC) Interactive Map Application for daily datasets
accessing the Global Historical Climate Network (Menne
et al., 2011) database of temperature, precipitation and
pressure records managed by the NCDC, Arizona State
University and the Carbon Dioxide Information Analysis
Center (http://gis.ncdc.noaa.gov/map/cdo/, accessed
2012/09/01).

CFSR data

CFSR data were obtained through the Data Support
Section of the Computational and Information Systems
Laboratory at the NCAR in Boulder, CO. For each
catchment, we interpolated the CFSR temperature and
precipitation rate fields to the centre of the catchment
(the fields identified as tmp2m and prate, respectively).
Daily maximum and minimum temperatures were
determined from the hourly forecast values, and daily
precipitation rates were determined by summing precip-
itation over 24-h periods. Maximum and minimum
temperatures as well as precipitation were calculated
using geographic midnight to midnight for each basin’s
location. For the analysis using weather stations at
different distances from a watershed, we interpolated
CFSR data to the coordinates of each weather station.

Analysis

All models were calibrated to maximize the Nash–
Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970;
Gupta and Kling, 2011) between observed and simulated
stream discharge on a daily time step using the DEoptim
package in the R computing environment (Ihaka and
Gentleman, 1996; R Core Team, 2013). Separate model
calibrations were performed for each meteorological
dataset (e.g. for weather stations, and for CFSR
interpolated to the centre of the watershed as well as
interpolated to the locations of each of the weather
stations). Streamflow at the Gumera watershed outlet was
calibrated for an 8-year period, from 1996 to 2003, and
e of each watershed, the closest weather station and the best
station-based datasets

est Meta

eather
Closest Met
distance (km)

Best Metb

weather
Best Met

distance (km)

NA NA 0.52 NA
NA NA 0.68 NA
0.36 9 0.67 9
0.08 15 0.34 45
0.63 15 0.63 15

own Brook and Gumera, or a single weather station in the case of Andreas

.

r stations in the case of Town Brook and Gumera.

Hydrol. Process. (2013)
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streamflow in Town Brook was calibrated for a 5-year
period from 1998 to 2002 to enable us to compare and
contrast the results with prior published studies for these
watersheds (Easton et al., 2008; White et al., 2011). For
the remaining basins, streamflow at the watershed outlet
was calibrated for an 11-year period from 2000 to 2010.
In the DEoptim library, the number of guesses for the
optimal value of the parameter vector (NP) was set to
eight, and the number of iteration cycles over NP guesses
(itermax) was set to 200. Each optimization converged
near iteration 100, so this value did not seem to influence
the optimization. Twenty model parameters were cali-
brated during optimization (Table II) (Moriasi et al.,
2007). For the second analysis, we bootstrapped our data
to determine the variability in our model performance. To
do this, we sub-sampled 1000 random days from our time
series and determined our mean and standard deviations
in NSE from these data.
Figure 1. Comparison of the simplified nine HRU initializations in the Town
Brook watershed for CFSR (a), ideal meteorological weather stations (b) and
against the previous best values of the more complex SWAT model
initialization shown in (c). The simplified initialization performs similarly to
the complex initialization, and there is a significant increase in performance
when the CFSR meteorological data are used to force the SWAT model
RESULTS

Study 1

For the Town Brook and Gumera watersheds, the
simulated stream discharge using CFSR (NSE= 0.63 and
0.71, respectively) was similar to or slightly better than
the results using weather station data (NSE = 0.52 and
0.68, respectively), as seen in Table V and Figures 1
and 2. Hydrographs for the two watersheds in Figure 3
also shows similar behaviour between the datasets for
both watersheds. For Town Brook, the optimized results
for our SWAT initialization are comparable to results
from previous studies (Figure 1b, c) when using the same
weather station data as the previous study (Easton et al.,
2008). When using CFSR data, the performance was
slightly better as shown comparing Figure 1(a) to Figure 1
(b, c). For Gumera, the NSEs were slightly better than
those of previously published studies (Figure 2a, b; White
et al., 2011).

Study 2

For the Cross River, Tesuque Creek and Andreas Creek
watersheds in study 2, the modelled streamflow using
CFSR data interpolated to the location of the stream
gauge consistently had higher NSE values than the results
generated using the nearest weather station (Table V and
Figure 4). Hydrographs of measured versus simulated
discharge are shown in Figure 5 for the closest weather
station, and CFSR-based weather data. Although we
initially hypothesized that model performance would
diminish as the distance between the watershed and
weather station increased, our results suggest somewhat
more complex relationships. Figure 6 shows that in some
cases (e.g. Tesuque Creek), weather stations located at a
Copyright © 2013 John Wiley & Sons, Ltd.
greater distance from the watershed actually provide
better or more representative estimates of weather, as
indicated by model performance.
Hydrol. Process. (2013)



Figure 2. Comparison of the simplified nine HRU initializations in the
Gumera watershed for CFSR (a) and ideal meteorological weather stations
(b), and there is similar performance when the CFSR meteorological data are
used to force the SWAT model versus using the closest weather stations

Figure 3. Hydrographs for Town Brook (a) and Gumera (b) watersheds, show
and nearest weath

USING CFSR AS WEATHER INPUT DATA FOR WATERSHED MODELS

Copyright © 2013 John Wiley & Sons, Ltd.
For Cross River and Andreas Creek, the NSE values
declined less rapidly with increasing distance between the
weather station and watershed moving towards the ocean
than when considering stations further inland (Figure 6a, c).
CFSR-based results showed a similar pattern at Andreas
Creek, but a more or less symmetrical decline in NSE at
Cross River. For Tesuque Creek watershed (Figure 6b), the
best weather stations were actually the two furthest
from the watershed, which are the most similar in terms
of topography and land cover (e.g. mountainous and
forested area of similar elevation). In general, the
relatively arid watersheds, Andreas Creek and Tesuque
Creek, were more difficult to model hydrologically
(Figure 5b, c) than the humid Northeastern US
watersheds (Figures 3a and 5a).
DISCUSSION

Using CFSR weather input to force the SWAT
model delivered ‘satisfactory’ (NSE> 0.5) to ‘very good’
(NSE> 0.65) per Saleh et al. (2000) results for predicted
versus observed flow on a daily time step, although care
should be taken when comparing these results to those of
different studies (Schaefli and Gupta, 2007). These results
were consistently better than forcing the SWAT models
using weather station records. Interestingly, the model
results for Town Brook were better than those previously
published by Easton et al. (2008), even though that study
contained orders of magnitude more unique HRUs and
ing the measured streamflow (black) with the CFSR-based prediction (red)
er station (blue)

Hydrol. Process. (2013)



Figure 4. Comparison of the simplified nine HRU initializations in the Cross River, Tesuque Creek and Andreas Creek watersheds with the (a)
frames showing the CFSR meteorological data results and (b) frames showing ideal meteorological weather station results used to force the

SWAT model

Figure 5. Hydrographs for Cross River (a), Tesuque Creek (b) and Andreas R (c) showing the measured streamflow (black) with the CFSR-based
prediction (red) and nearest weather station (blue)

D. R. FUKA ET AL.

Copyright © 2013 John Wiley & Sons, Ltd. Hydrol. Process. (2013)
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Figure 6. Optimal NSE for the CFSR (x) and weather stations (circle) at
various distances from the centre of Cross River (a), Tesuque Creek (b)
and Andreas Creek (c). The NSE model performance using the CFSR
weather data interpolated to the centre of the watershed is shown with
asterisks. Negative distances indicate stations that are towards the ocean
(a and c only), with the exception of the ‘Palm Springs’ station, which is
placed in the negative side at �9.3 km, to distinguish it from the ‘Palm
Springs Regional Airport’ station at +8.6 km. Error bars indicate ± 2 SD

for 1000 bootstrap samples of predicted versus observed results

USING CFSR AS WEATHER INPUT DATA FOR WATERSHED MODELS
were thus afforded more degrees of freedom in the SWAT
calibration and used a weather record consisting of
multiple stations. This highlights one of the strengths of
Copyright © 2013 John Wiley & Sons, Ltd.
the CFSR dataset, in as much as it can outperform land-
based stations even in research watersheds.
In general, the relatively arid watersheds, Andreas

Creek and Tesuque Creek, were more difficult to model
hydrologically (Figure 5b, c), than the Northeastern US
watersheds, possibly because large storm runoff events
are triggered by small, localized precipitation events that
are not well represented by the relatively coarse-scale
CFSR data or weather station data. The desert mountain-
ous Southwest climate in NM demonstrated the most
significant benefits of using the interpolated CFSR
dataset. First, weather station density is substantially
lower in this region relative to much of the rest of the
conterminous USA. This results in fewer basins having
weather stations close enough to adequately represent the
streamflow. More importantly, even with weather stations
in close proximity to the watershed, the precipitation
events, characteristically small-cell-based storm systems
of short duration and low frequency, were often not
representative of weather occurring in the watershed.
Stations within 10–20 km2 had virtually no relationship
with the observed streamflow for the basin (Figure 6b). It
is interesting that weather stations located at a greater
distance produced better results than the closest stations,
possibly because they are located in similar terrains or
microclimate regimes, i.e. more similar elevation, aspect
and land cover. In this case, the microclimate similarities
could be more important than the proximity of the
weather station. We should also note that there could be
other reasons for these results, such as the variability in
the quality of NCDC gauge data, given all of the station
types and collection methods (e.g. some are non-
recording and have to be manually checked daily, and
some are more susceptible to wind and splash loss). This
type of climate is also challenging for CFSR-based
modelling because the high-intensity local events may be
overly ‘dampened’ in the relatively coarse scale of the
CFSR data (e.g. Figure 6b, c).
One reason that the CFSR data may perform as well as

it does for watershed modelling is that the weather data
are effectively averaged over spatial scales that are more
similar to many watershed extents or at least more similar
than a typical point measurement of a weather station is to
a watershed. Because the CFSR data represent averages
over much larger areas than weather station data, CFSR
appears able to maintain predictive capability even when
interpolated to points far away from the watershed.
Although most hydrology textbooks note that the

magnitude of point rainfall needs to be adjusted when
considering the rainfall over a larger surrounding area
(e.g. Miller et al., 1973 cited in Dingman, 2008), few
modellers do this explicitly and often account for these
differences during model calibration. Using the spatial
CSFR dataset, such adjustments are less important. As
Hydrol. Process. (2013)
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a result of the difference in spatial scales between
CFSR data and weather station data, direct comparisons
between the two provide little insight. This is not
surprising and indeed has been noted in several other
studies. For instance, Vasiloff et al. (2009) pointed out
that comparisons of weather station data to higher-
resolution radar and satellite precipitation products are
hard due to the effects of wind, hail, missing gauge
data and the storm tracks. In fact, Mehta et al. (2004)
demonstrated that weather gauges located at distances
less than the resolution of the CFSR have a low
correlation (r2< 0.3). However, when the CFSR data
are developed, there are automatic comparisons be-
tween CFSR and the ground-based weather data (Saha
et al., 2010), which ensures some level of agreement.
Moving forward, it would be very useful to use

regional watersheds with high-resolution weather station
networks to determine what resolution of station density
is needed in time, space and locality for weather estimates
to adequately drive watershed models, especially more
process-oriented models. As can be seen by comparing
Figure 6(a–c), the result of such studies would be extremely
location specific. Thus, it is recommended that such studies
be performed prior to blindly accepting CFSR as a
hydrological forcing dataset. Perhaps the most appropriate
andmost easily accomplished use for CFSR is to use it as an
indication of the minimum acceptable model performance
for any given hydrological study, although, as indicated by
the results of this study, CFSR data might very well provide
increased watershed model performance.
One valuable attribute of the CFSR data is that it is

globally available and will allow modellers access to
weather data (available at http://cfsr.bse.vt.edu/swat-cfsr-
v02.pl) where there are no nearby weather stations. This
is probably most valuable for data-poor regions such as in
developing countries. In these regions, even when data
are collected and archived, the effort and money required
to access them can be substantial; the co-authors have
personally experienced this specific difficulty in countries
such as India and Chile, and several countries in Africa.
One reason for the inclusion of the Gumera watershed in
Ethiopia was to make this point explicit with a tangible
example.
Another potentially valuable characteristic of the CFSR

data for watershed modelling is that it is updated in real
time, including short-term forecasts (6 h). This may
facilitate more widespread efforts in real-time or near-
real-time hydrological modelling. This could be beneficial
for predicting flood likelihood and location or for crop
forecasting. It could also allow modellers to predict areas
in a watershed with a high risk of generating runoff and
where land managers might avoid environmentally risky
activities (Walter et al., 2000; Agnew et al., 2006; Easton
et al., 2008).
Copyright © 2013 John Wiley & Sons, Ltd.
While we attempted to explore a wide range of
hydroclimatic settings in this study, a valuable next step
would be to explicitly expand on these studies to
determine where CFSR data work particularly well and
where there may be problems. Also, although we looked
at one large watershed (Gumera, 1200 km2) and several
on the order 40 km2, the interplay between watershed size
and CFSR data deserves more investigation. Probably
the most valuable next-steps will be to apply CFSR to
more physically based and complicated modelling efforts
(e.g. realistic landscape representation instead of the
quasi-lumped approach used here). The objective of this
study was limited to evaluating whether CFSR data could
theoretically work for providing weather inputs to
watershed modelling, especially where good weather
station data are not available. Thus, we did not make any
attempts to bias correct the CFSR data, but the way we
employed the SWAT model, as a black-box response
function, likely resulted in parameters calibrations that
offset any systematic biases in the weather data.
CONCLUSION

This proof-of-concept study demonstrated that CFSR data
could be reliably applied to watershed modelling across a
variety of hydroclimate regimes and watersheds. Surpris-
ingly, the CFSR data generally resulted in as good or
better streamflow predictions as the best (often nearest)
weather station. We speculate that this is in part because
the CFSR data are averaged over areas comparable to
watershed areas we tested, at least more representative of
watershed area than the area of a weather station. We note
that this could be problematic for watersheds where the
highest discharges are associated with very small,
localized storms. In these cases, watershed modelling will
be challenging regardless of the source of weather data.
Adding CFSR data to the suite of watershedmodelling tools
provides new opportunities for meeting the challenges of
modelling un-gauged watersheds and advancing real-time
hydrological modelling across the globe.
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