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• Higher annual ET and PET values were
predicted with the Hargreaves PET
method.

• The Hargreaves PET method was found
to be the preferred PET option for the
UMRB.

• Satisfactory results were found for the
calibration and validation gauge sites.

• PRISM climate data exhibited the stron-
gest overall reliability for the UMRB.
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This study reports the application of Soil and Water Assessment Tool (SWAT) within the Hydrologic and Water
Quality System (HAWQS)on-line platform, for the UpperMississippi River Basin (UMRB). TheUMRB is an impor-
tant ecosystem located in the north central U.S. that is experiencing a range of ecological stresses. Specifically,
testing of SWAT was performed for: (1) Hargreaves (HG) and Penman-Monteith (PM) PET methods, and
(2) Livneh, National Climatic Data Center (NCDC) and Parameter-elevation Regressions on Independent Slopes
Model (PRISM) climate datasets. The Livneh-PM combination resulted in the highest average annual water
yield of 380.6 mm versus the lowest estimated water yield of 193.9 mm for the Livneh-HG combination, in re-
sponse to 23-year uncalibrated simulations. Higher annual ET and PET values were predicted with HG method
versus the PMmethod for all three weather datasets in response to the uncalibrated simulations, due primarily
to higher HG-based estimates during the growing season. Based on these results, it was found that the HG
method is the preferred PET option for the UMRB. Initial calibration of SWAT was performed using the Livneh
data and HGmethod for three Mississippi River main stem gauge sites, which was followed by spatial validation
at 10 other gauge sites located within the UMRB stream network. Overall satisfactory results were found for the
calibration and validation gauge sites, with the majority of R2 values ranging between 0.61 and 0.82, Nash-
Sutcliffe modeling efficiency (NSE) values ranging between 0.50 and 0.79, and Kling-Gupta efficiency (KGE)
values ranging between 0.61 and 0.84. The results of an additional experimental suite of six scenarios, which rep-
resented different combinations of climate data sets and calibrated parameters, revealed that suggested
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statistical criteria were again satisfied by the different scenario combinations. Overall, the PRISM data exhibited
the strongest reliability for the UMRB.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The Upper Mississippi River Basin (UMRB) was proclaimed both a
“nationally significant ecosystem” and a “nationally significant com-
mercial navigation system” in the Water Resources Development Act
that was passed by the U.S. Congress in 1986 (Weitzell et al., 2003;
USACE, 2016). However, extensive alterations to the UMRB stream sys-
tem, which began during the middle of the 19th century to support
commercial navigation, continue to conflict with ecosystem services
goals (USACE, 2016). These streamsystemmodifications, in conjunction
with large-scale land use change throughout much of the region, have
resulted in a degraded UMRB ecosystem and loss of native aquatic di-
versity (Weitzell et al., 2003). Other pervasive ecosystem stresses are
prevalent in the UMRB stream system including degradedwater quality
(Bouska et al., 2018; Christianson et al., 2018; Sprague et al., 2011; Jones
et al., 2018), and increasing flood levels and damage (Criss and Shock,
2001; Criss and Luo, 2017).

A wide range of approaches have been implemented to support ef-
forts to mitigate habitat decline, pollution, flooding, and/or other
UMRB related problems, including habitat restoration (USACE, 2016),
biological and habitat surveys (Weitzell et al., 2003), nutrient loss re-
duction strategies (Christianson et al., 2018) and in-stream monitoring
(Royer et al., 2006; Sprague et al., 2011; Jones et al., 2018). Applications
of simulation models have also emerged as key tools in evaluating
UMRB problems including The Soil and Water Assessment Tool
(SWAT) ecohydrological model (Arnold et al., 1998, 2012; Williams
et al., 2008; Bieger et al., 2017) which has been extensively applied
worldwide for a wide range of watershed scales, environmental condi-
tions and water resource problems (Gassman et al., 2007, 2014;
Tuppad et al., 2011; Krysanova and White, 2015; Bressiani et al., 2015;
Tan et al., 2019; CARD, 2019). SWAT has been used to analyze several
UMRB-focused water quantity and/or water quality issues as described
in numerous previous studies (e.g., Jha et al., 2004, 2006; Demissie et al.,
2012a; Srinivasan et al., 2010; Rabotyagov et al., 2010; Kling et al., 2014;
Qi et al., 2019a, 2019b). The model has also been applied in dozens of
studies for smaller stream systems within the UMRB (e.g., Hanratty
and Stefan, 1998; Vaché et al., 2002; Kirsch et al., 2002; Green and
Wang, 2008; Jha et al., 2010; Beeson et al., 2014; Almendinger et al.,
2014; Teshager et al., 2016; Getahun and Keefer, 2016; Gassman et al.,
2017; Schilling et al., 2019).

SWAT has been adopted within several decision support tools
(DSTs; e.g., Barnhart et al., 2018) including the USEPA Hydrologic and
Water Quality System (HAWQS) on-line platform (Yen et al., 2016;
USEPA, 2019). The HAWQS platform provides the capability of building
SWAT projects relatively quickly for U.S. watersheds of any scale using
pre-loaded climate, land use, management, soil, topographic and other
pertinent data layers. SWAT models are constructed in HAWQS by
using hydrologic unit codes (HUCs) to delineate a study region that
have been defined by the USGS and other federal agencies (USGS,
2013). The HUC8, HUC10 or HUC12 levels (USGS, 2013) can be chosen
in HAWQS (Yen et al., 2016) which are commonly referred to as 8-,
10- or 12-digit watersheds. Yen et al. (2016) note that “preliminary cal-
ibration” have been conducted for parameters incorporated in HAWQS
and Barnhart et al. (2018) state that HAWQS is an example of a “widely
used and tested watershed-based DST.” However, only three studies to
date report results of SWAT applications built in HAWQS (Yen et al.,
2016; Fant et al., 2017; Yuan et al., 2018), which were supported with
limited model testing. The Initial testing results of these HAWQS-
based SWAT models strongly suggest that more in-depth testing is
needed to better establish ideal input parameter values and/or sources
for different regions including the UMRB, for SWAT projects built in
HAWQS.

Thus, it is extremely relevant in this study to investigate further test-
ing of a UMRB SWAT model built in HAWQS, in the context of U.S. De-
partment of Energy (USDOE) sponsored research focused on assessing
climate simulations in conjunction with the energy-land-water nexus
(USDOE, 2019). An important component of this research is the evalua-
tion of different baseline (historical)measured climate data sources and
potential evapotranspiration (PET) methods, within the HAWQS-based
SWATmodel created for the UMRB. The evaluation of inputs from alter-
native climate data sources is fundamentally important in determining
the accuracy of SWAT for representing hydrological processes of a
given watershed system as documented in numerous previous studies
(e.g., Roth and Lemann, 2016; Tan et al., 2017; Vu et al., 2018; Qi et al.,
2019a). Assessment of simulated evapotranspiration (ET) is also critical
due to the influence of ET on the overall hydrologic balance, crop yields
and agricultural management at the watershed scale (Alemayehu et al.,
2016; Aouissi et al., 2016; Tie et al., 2018; Valle Júnior et al., 2020). The
assessment of climate data sources and PET methods in this study is
foundational for future applications of HAWQS-based UMRB SWAT
models within the USDOE sponsored research project and other poten-
tial applications focused on various ecosystem related problems as de-
scribed above.

Previous evaluations of climate data effects on SWAT UMRB hydro-
logic predictions are limited to the research reported by Qi et al.
(2019a), who compared the impacts on estimated streamflow between
National Climatic Data Center (NCDC) data (NOAA, 2019) data and two
versions of the NASA North American Land Data Assimilation System
Phase Two (NLDAS2) data (Xia et al., 2012). The evaluation of climate
data sources in this study included three data sets that spanned
N20 years: (1) NCDC data and the Parameter-elevation Regressions on
Independent Slopes Model (PRISM) data (PCG, 2019; USDA-NRCS,
2019), which are both available in HAWQS, and (2) Livneh data
(Livneh et al., 2013), which must be accessed external to HAWQS
(ESRL, 2019). In addition, two other key inputs to the SWAT UMRB as-
sessment were evaluated in this study. First, the effects of two PET
methods on streamflow and ET estimates were also investigated
which are standard options available in SWAT: Hargreaves
(Hargreaves and Samani, 1985) and Penman-Monteith (Monteith,
1965; Allen et al., 2006). Second, the influence of different land use
types on UMRB hydrology were analyzed for baseline conditions, in
combination with the three climate data sets and two PET methods.

In summary, the specific objectives of this research were to com-
pare: (1) the temporal and spatial differences of the NCDC, PRISM and
Livneh climate data sets, (2) the impacts of using the Hargreaves (HG)
versus the Penman-Monteith (PM) PET methods on SWAT UMRB
streamflow and ET estimates, (3) the impacts of different land use
types on UMRB baseline hydrology, and (4) the effects of the three dif-
ferent climate datasets in combination with the two PET methods on
UMRB streamflow estimates.

2. Description of the study region

The UMRB originates from Lake Itasca in northern Minnesota and
outlets at the confluence of the Ohio and Mississippi Rivers near the
town of Cairo in southern Illinois (Fig. 1). The UMRB stream system
drains a total of 491,700 km2,which includes large portions offive states
(Illinois, Iowa, Minnesota, Missouri and Wisconsin) and small portions



Fig. 1. The location of the Upper Mississippi River Basin (UMRB) with 8-digit watersheds, and gauge sites over the study region.
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of three other states (Indiana, Michigan and South Dakota). Nearly
1400 km of the Upper Mississippi River is commercially navigable, be-
tween St. Paul, Minnesota and the confluence with the Ohio River,
which is facilitated by a system of 29 locks/dams and dredging to main-
tain a minimum channel depth of 2.7 m (UMRBA, 2019). The region is
designated as code 07 at the 2-digit watershed level (USGS, 2013) and
is further delineated into 131 8-digit subwatersheds and 5729 12-digit
subwatersheds (Panagopoulos et al., 2015). The basin outlet is often as-
sumed to be a gauge site located nearGrafton, Illinois in SWATmodeling
studies, which drains an area of 447,802 km2 (119 8-digit watersheds)
and is located just upstream of the confluence of the Mississippi and
Missouri Rivers.

The major land use in the UMRB is cropland (44.7%), which is dom-
inated by rotations of corn (27.5%) and soybean (17.2%). There are
Fig. 2. Distribution of average annual precipitation amounts values by climate data s
smaller areas of wheat, oats and other crops in the UMRB but those
are excluded in this HAWQS modeling framework. Other important
land use categories include forest (20.1%), grassland (16.2%), water
and wetlands (9.9%) and urban/developed areas (9.1%). Annual precip-
itation averaged over 830mmacross the UMRB during the 23-year sim-
ulation period (1983 to 2005) used in this study, and ranged from
b600mm in the northwest part of the basin to N1000mm in the south-
ern area of the basin, depending on the source of precipitation data
(Fig. 2). Average daily temperatures in the region generally range
from 4.0 °C to 5.5 °C in the northern part of the basin to 11.5 °C to
13.0 °C in the south (Fig. 3). However, distinctly colder average temper-
atures are indicated by the NCDC dataset for a subset of specific 8-digit
watersheds in the northwest and central parts of the UMRB, as com-
pared to the PRISM and Livneh datasets (these lower temperatures are
et and 8-digit watersheds across the UMRB for the time period of 1983 to 2005.



Fig. 3. Distribution of average daily temperature values by climate data set and 8-digit watersheds across the UMRB for the time period of 1983 to 2005.
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likely an anomaly in the NCDC data as discussed in Section 4.2). The soil
types range from heavy, poorly drained clay soil to light, well-drained
sands, with silty loam and loam soils covering about 66% of the total
UMRB area (Demissie et al., 2012b). The topography is characterized
by flat to gently rolling terrain, with 55% of the area having less than a
2% slope and an average elevation of 280 m.

3. Previous SWAT applications reported for the UMRB

A total of 41 previous studies (Table 1) were documented (CARD,
2019) that reported simulation of the UMRB using SWAT. Four of the
studies report SWAT applications for the entire MARB that included
the UMRB as a major subregion (Kannan et al., 2019; Santhi et al.,
2014; White et al., 2014; Yuan et al., 2018) and three other studies re-
port Corn Belt region results that include SWAT analyses for the com-
bined UMRB and Ohio-Tennessee River Basin (OTRB) systems (Kling
et al., 2014; Panagopoulos et al., 2015, 2017). The studies listed in
Table 1 focused on a range of themes including model testing, climate
change impacts on streamflow or water quality, and BMP, land use
change or biofuel cropping production impacts on water quality. The
only UMRB application that reported the effects of different climate
sources onUMRB streamflowwasQi et al. (2019a) andnoneof the stud-
ies reported the impacts of different PET methods.

There is a considerable distribution of reported SWAT subwatershed
and HRU structures (Table 1), ranging from a relatively coarse delinea-
tion of 119 subwatersheds and 474 HRUs (Takle et al., 2005) to an ex-
tremely detailed subdivision of 5732 subwatersheds and 136,079
HRUs (Feng et al., 2018). Most of the studies state that model testing
was performed using streamflow data collected at a gauge site located
near Grafton, IL. A smaller subset of studies report expanded calibration
and/or validation at additional gauge sites (Table 1). Ten of the studies
report some level of pollutant load testing at specific gauge sites
(Table 1). Some of the studies provide comparisons of SWAT predicted
loads versus observed or other estimated loads at the 8-digit watershed
level (e.g., Arnold et al., 2000; Kannan et al., 2008;White et al., 2014; Jha
et al., 2015).

The majority of the studies report both calibration and validation
testing results at Grafton and/or other gauge locations, and include eval-
uations based on the Coefficient of Determination (R2) and/or Nash-
Sutcliffe Efficiency (NSE) statistics (Krause et al., 2005). Tabulation of
computed R2 and NSE statistics, which measure how accurately simu-
lated streamflows replicated measured streamflow, are shown by fre-
quency in Table 2 for a daily time step (usual SWAT time step), and
aggregated monthly and annual time periods. Roughly 90% of the NSE
and R2 statistics represented in Table 2 exceed 0.5 and 0.6, respectively,
which satisfies satisfactory or better model performance criteria sug-
gested by Moriasi et al. (2007, 2015). The distribution of statistics in
Table 2 also generally mirror previous similar statistical compilations
reported in several review studies (Gassman et al., 2007, 2014;
Tuppad et al., 2011; Bressiani et al., 2015; Tan et al., 2019). Some of
the weaker validation statistics reflect more stringent applications of
un-calibrated SWAT models reported by Srinivasan et al. (2010) and
Qi et al. (2020).

The composite results of previous studies (Table 2) confirm that ap-
plications of different versions of SWAT have been generally successful
in replicating observed streamflows at Grafton, IL and at other gauge
sites, for both calibration and validation. The majority of model testing
was performed using a split-time approach (Arnold et al., 2012),
where calibration and validationwere conducted for the same gauge lo-
cations based on observed streamflow data collected during two differ-
ent time periods. Spatial validation, where calibration is performed for
different gauge sites versus the gauges used for validation, was per-
formed only in support of the analyses by White et al. (2014), and for
Demissie et al. (2012a) andWu et al. (2012a) as reported in their corre-
sponding supporting documentation (Demissie et al., 2012b). A spatial
validation approach was adopted in this study as described in more de-
tail below.
4. Methods and materials

4.1. SWAT/HAWQS model configuration and simulation scenarios

The development of the UMRB SWAT model was performed in
HAWQS, which provides interactive web interfaces, maps and
preloaded data layers including stream network, land use and land
management, soil, climatic, point sources, historical climate, future cli-
mate projections, atmospheric deposition and reservoir data
(Srinivasan, 2019). The sources of these input data and the date
(month/year) are listed in HAWQS (2017). Users can assign preferred
parameter values at HRU, subwatershed and/or overall basin levels, re-
spectively. In addition, HAWQS is technically capable of providing pre-
liminarily calibrated parameters as default values, although the level
of testing supporting these parameter values is very limited as previ-
ously noted. In this study, the default parameters values set by
HAWQS for the UMRB SWATmodel were considered to be uncalibrated
baseline data (Table 3), and output from this baseline model are re-
ferred to as uncalibrated results. The files created for this uncalibrated
baseline UMRB SWAT model were also downloaded from HAWQS
after the initial model construction, which allows additional parameter
modification using the SWATeditor programor other external software.

The SWATmodel was configured for the UMRB at the 8-digit water-
shed level within the HAWQS platform, resulting in 119 8-digit water-
sheds that encompass the previously described 447,802 km2 area that
drains to Grafton, IL (the outlet is the 8-digit watershed identified as
HUC07110009). A total of 34,630 HRUs were initially configuredwithin
the 119 subwatersheds when the UMRB SWAT model was first con-
structed within HAWQS. HRU thresholds of 1 km2 were then applied
to the land use, soil type and slope classes to eliminate minor land
uses, soils, and slopes in each subwatershed. The application of the



Table 1
Focus, structure, SWAT version and total gauge sites used for model testing in previous SWAT-based UMRB studies.

Study Focus of study Subwatersheds/HRUs SWAT
version

Testing
at
Grafton,
IL

Streamflow
testing
sites Cal/Val

Pollutant
testing
sites Cal/Val

Arnold et al., 2000 Hydrologic testing and evaluation 131/NRa,b NR Noc 0/1 0/0
Deb et al., 2015 Biofuel crops and climate change 131/14,568 2009 Yes 0/1 0/1
Demissie et al., 2012ad Biofuel crop impacts on water quality 131/14,200 2005 Yes 3/7 3/7
Eisner et al., 2017e Climate change impacts from 9 hydrologic models used for major

river systems
NR NR Noc 1/1 0/0

Feng et al., 2017 Suitability of marginal land for biofuel crop production NR NR No 0/0 0/0
Feng et al., 2018 Biofuel crop production on marginal land 5732/136,079 2012 Yes 13/13 0/0
Gu et al., 2015 Biofuel crop impacts on water quality 131/2730 2005f Noc 0/0g 0/0
Gosling et al., 2017e Predicted changes in runoff due to multiple global warming

scenarios
NR NR Noc 1/1 0/0

Hattermann et al., 2017e Climate change impacts on hydrological model output for major
river systems

NR NR Noc 1/1 0/0

Huang et al., 2017e Comparison of 9 hydrologic models that were applied to major
river systems

NR NR Noc 1/1 0/0

Jha et al., 2004 Climate change impacts on streamflow 119g/474h NR Yes 1/1 0/0
Jha et al., 2006 Climate change impacts on streamflow 119g/NR 2000f Yes 1/1 0/0
Jha et al., 2015 Climate change impacts on nitrate loads 131/18,000 2005 Yes 1/0 0/0
Kannan et al., 2008 Automatic calibration approach 131/NR NR No 0/0 0/0
Kannan et al., 2019 Calibration approaches/issues NR 2000f Yes 5/5 0/0
Kling et al., 2014 BMP impacts on water quality 5279/5279i 2009f Noj 0/0j 0/0j

Krysanova and Hattermann,
2017e

Summary of comparing hydrologic and climate models for 12 major
river systems

NR NR Noc 1/1 0/0

Li et al., 2017 Drought impacts on ecosystem services 157/6686 2009f Yes 13/13 0/0
Li et al., 2019 Climate change impacts on BMP effects NR 2009f Yes 13/13 6/6
Panagopoulos et al., 2014 Climate change impacts on BMP effects 5279/5279i 2012 Yes 12/0 0/0
Panagopoulos et al., 2015 Calibration and validation approach 5279/5279i 2012 Yes 12/12 6/6
Panagopoulos et al., 2017 Biofuel crop impacts on water quality 5279/5279i 2012 Noj 0/0j 0/0j

Qi et al., 2019a Climate source impacts on streamflow 131/NR 2012 Yes 11/11 0/0
Qi et al., 2019b Enhanced freeze-thaw cycle processes 131/14,568 2012k Yes 1/0 0/0
Qi et al., 2020 Water quality testing and evaluation 131/14,568 2012l Yes 0/3m 0/3m

Rabotyagov et al., 2010 Analyses of least cost of BMPs 131/NR NR No 0/0 0/0
Rajib and Merwade, 2017 Land use change impacts on hydrology 260/NR NR Yes 10/2 0/0
Santhi et al., 2008 Calibration and validation approach 131/NR NR No 0/0n 0/0
Santhi et al., 2014o Phosphorous transport in stream system NRp 2005q Yes 5/5 5/5
Secchi et al., 2011 Land use change impacts on water quality 131/2730 2005f Yes 1/1 1/1
Srinivasan et al., 2010 Uncalibrated baseline streamflow testing 131/14,568 2009r Yes 0/11m 0/0
Takle et al., 2005 Climate change impacts on streamflow 119/474 2000f Yes 0/0s 0/0
Takle et al., 2010 Climate change impacts on streamflow NR 2000f Yes 0/0s 0/0
Vetter et al., 2017e Climate change uncertainty within hydrologic models used for

major rivers
NR NR Noc 1/1 0/0

Wang et al., 2011o Crop production impacts on sediment loss NRp 2005 Yes 5/5 0/0
White et al., 2014o Nutrient loads delivered to stream system, including effects of

BMPs
131t/NRb 2005o Yes 7/4 7/4

Whittaker et al., 2015 Land use change impacts on water quality 131/NR 2009u Yes 0/0/ 0/1
Wu et al., 2012ad Biofuel crop impacts on water quality 131/14,200 2005 Yes 3/7 3/7
Wu et al., 2012b Climate change impacts on streamflow 187g/972 99.2v Yes 1/1 0/0
Wu and Tanaka, 2005 Reducing nitrate loads in stream system 118g/1410 2000 Yes 0/1 0/1
Yuan et al., 2018 Estimating nitrate loads for Mississippi stream system using

multiple models
131t/NR 2012w NR NR NR

a NR= not reported.
b Specific HRU data are not reported in these studies; however Arnold et al. (2000) note that approximately 16 HRUs were delineated per subwatershed andWhite et al. (2014) state

that a range of 40 to 99 HRUs were delineated in a given subwatershed.
c The gauge used formodel testing in these studies was located near Alton, IL, which is located several km south of Grafton, IL (and below the confluence of theMississippi andMissouri

Rivers) and captures a drainage area of 444,185 km2 (Huang et al., 2017).
d The model structure, gauge testing sites and model testing results used in these studies were reported in Demissie et al. (2012b).
e These six studies were part of a special issue published in Climatic Change (https://link.springer.com/journal/10584/141/3/page/1). Results of applying SWAT for the UMRB are re-

ported in these six studies. SWAT testing statistics are reported in supporting documentation that can be accessed at Huang et al. (2017).
f The SWAT model version was inferred from citations to SWAT documentation reported in the respective study.
g These SWAT models were constructed with the outlet at Grafton, IL and thus excluded the subwatersheds that drain to the Mississippi River below Grafton.
h Inferred from information reported in Takle et al. (2005).
i A dominant HRU approach was used that resulted in one HRU per subwatershed.
j Model testing was based on the results reported in Panagopoulos et al. (2015).
k Standard SWAT model used in study was SWAT2012, Revision 664; modified version of SWAT called TSWAT.
l A standard SWAT2012 version.
m Uncalibrated simulations were performed in these studies; Srinivasan et al. (2010) list “calibrated statistics” in Table 9 of their study for comparison purposes.
n Streamflow testing was not reported although mean NSE and R2 statistics were reported for water balance indicators determined for all 131 subwatersheds.
o An interface between the Agricultural Policy/Environmental eXtender (APEX) model (Gassman et al., 2010) and SWAT was used in these studies.
p It is inferred that the model structure used in these studies is based on what is reported in White et al. (2014).
q Model version based on personal communication with M. White, Grassland Soil and Water Research Laboratory, USDA-ARS, Temple, TX.
r Model version was not directly reported in study but confirmed in later study published by Deb et al. (2015).
s Model testing was based on previously reported information in either Jha et al. (2004) or Jha et al. (2006).
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t Almost all of the entireMARBwere simulated in these studies; i.e., White et al. (2014) simulated a total of 848 USGS 8-digit watersheds (USGS, 2013) and Yuan et al. simulated total of
821 USGS 8-digit subwatersheds. It is assumed that 131 of the 8-digit watershed were used to represent the UMRB in both studies.

u SWAT model structure based on previously developed model described by Srinivasan et al. (2010).
v The authors report using a modified version of SWAT 99.2 in their study.
w Themodel versionwasnot directly reported in the study but themodeling systemwas constructed via theHydrologic andWaterQuality System(HAWQS) that currently provides the

option of using four different releases of the SWAT2012 model (Srinivasan, 2019).
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thresholds resulted in a total of 30,812 HRUs for the baseline UMRB
SWAT model and subsequent calibrated versions of the UMRB model.

The SWAT simulations were performed from 1981 to 2005; the first
2 years served as an initialization period. This 25-year simulation period
reflects a consistent time period available in all three data sets (see
Section 4.3). Two sets of six simulations each were then performed as
scenarios (Table 4) The first set of simulations were executed without
calibration using the baseline UMRB model, to provide an initial com-
parison of water balance and streamflow estimates between the three
climate data sets and two ET methods that were not influenced by any
adjustments in SWAT input parameters. These scenarios were based
on the baseline UMRB SWAT model that was executed with the
HAWQS default input parameters (Table 3). This allowed the weather
inputs (including daily precipitation, daily maximum temperature and
minimum temperature) to be held constant while varying the PET
methods, so that the effects of the PET methods on the hydrologic out-
puts can be discerned. The initial uncalibrated SWAT model was con-
structed using the Penman-Monteith (PM) PET method, which is the
default PET option that is used in HAWQS (scenarios PRISM(PM),
NCDC(PM) and Livneh(PM) in Table 4). The uncalibrated SWAT model
was then executed with the HG PET method (scenarios PRISM(HG),
NCDC(HG) and Livneh(HG) in Table 4), to provide a further basis of
comparison (Section 5.1).

The second phase of simulations were based on calibration and val-
idation, which was initially performed using the Livneh climate data
and HG PETmethod. The Livneh datawere chosen for the initial calibra-
tion due to the fact that the data set has served in a historical climate
role for a suite of downscaled climate projections (Pierce, 2016), that
may be analyzed as part of the broader research initiative (USDOE,
2019). The HGmethodwas selected because the annual ratio of ET/pre-
cipitation was N0.7 for HG method versus approximately 0.6 for PM
method. The HG method ET/precipitation ratio of 0.7 was more consis-
tent with the UMRB region ratio reported by Liu et al. (2013), who esti-
mated ET and runoff for the major basins that contribute steamflow to
the Gulf of Mexico. Calibration was performed for the three calibration
gauge sites shown in Fig. 1 and Table 5: St. Paul, Clinton and Grafton.
Spatial validationwas then performed by performing an additional sim-
ulation with the calibrated model, without any further adjustments to
the SWAT input parameters, and comparing simulated versus observed
streamflows at the other 10 “hydrologically independent” gauge sites
Table 2
Distribution of statistics comparing simulated streamflows versus measured streamflows that

Frequency range Daily Monthly

Calibration Validation Calibration

NSE R2 NSE R2 NSE

0.90–1.00 1
0.80–0.89 12
0.70–0.79 1 1 1 3 43
0.60–0.69 1 2 28
0.50–0.59 1 17
0.40–0.49 3
0.30–0.39 1
0.20–0.29 1
0.10–0.19
0.00–0.09
b0

a Data based on the following studies: Arnold et al. (2000), Deb et al. (2015), Feng et al. (20
(2019), Li et al. (2017), Panagopoulos et al. (2014), Panagopoulos et al. (2015), Qi et al. (201
Srinivasan et al. (2010), Wang et al. (2011), Wu et al. (2012b).

b Calibration was not performed by Srinivasan et al. (2010) and Qi et al. (2020); statistics fr
(Fig. 1 and Table 5). Each of the 10 hydrologically independent sub-
regions corresponds to either the most upstream part of the main
stem (Royalton for Mississippi River) or a major tributary flowing into
the main stem (i.e., the Skunk, St. Croix, Chippewa, Rock, Wisconsin,
Iowa, Des Moines, Minnesota or Illinois Rivers). Table 5 summarizes
the information related to the monitoring points.

Following calibration and validation, six additional experimental
scenarios (Table 4)were evaluated,whichwere again based onmonthly
streamflow output from 1983 to 2005. These scenarios provided further
assessment of the performance of SWAT in response to the three cli-
mate datasets, HG method, and calibrated parameters listed in Table 3
(that are described in more detail in Section 5.3). These second set of
six scenarios were further split into two subsets, which were demar-
cated as follows: (1) the first subset of three scenarios was based on
the calibrated parameters (Table 3) obtained with the previously de-
scribed Livneh climate dataset and HG method (scenario Livneh-
calibrated, in Table 4), versus (2) a second set of three scenarios that
were performed using calibrated parameters (Table 3) obtained with
the PRISM climate dataset in combinationwith the HGmethod (scenar-
ios PRISM-calibrated, Livneh-PRISM and NCDC-PRISM in Table 4).

This suite of scenarios thus provided an approach of further testing
SWAT with the three different climate data sets using two different
sets of calibration parameters that represent two different potential
baseline climate data sets: Livneh versus PRISM. The Livneh-calibrated
and PRISM-calibrated scenarios depict obvious conventional SWAT cal-
ibration simulations using the climate data sets that the model was cal-
ibrated with. However, the PRISM-Livneh, NCDC-Livneh, Livneh-PRISM
and NCDC-PRISM scenarios reflect atypical SWAT simulations that con-
sist of executing the model with a different climate data set than was
used for the calibration process. These additional scenarios provide fur-
ther insight into the sensitivity and performance of SWAT in response to
different climate inputs for the UMRB.

4.2. Description of climate datasets

Daily precipitation and temperature data obtained from the NCDC,
PRISM and Livneh climate datasets were used to simulate UMRB
streamflow. Brief summaries of these datasets are provided below
followed by further analysis of the apparent anomalies in the NCDC
temperature data revealed by Fig. 3.
were reported in SWAT UMRB studies by time steps and frequency ranges.a,b

Annual

Validation Calibration Validation

R2 NSE R2 NSE R2 NSE R2

3 3 5 7 11 6 27
23 23 35 6 6 8 9
44 27 29 1 6 3
24 19 19 7
4 13 8 2 4
4 10 7 3
2 5 2

2 1 2
3 2
1
1

18), Huang et al. (2017), Jha et al. (2004), Jha et al. (2006), Jha et al. (2015), Kannan et al.
9a, 2019b, 2020); Rajib and Merwade (2017), Santhi et al. (2014), Secchi et al. (2011),

om those two studies are reported here as validation.
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(1) NCDC: NCDC dataset consists of daily weather variables from the
Global Historical Climatology Network (GHCN)-Daily land-based
weather stations. The datasetwas developed via processing steps
of data collection, quality control, and archival and removal of
biases associated with factors such as urbanization and changes
in instrumentation through time (Menne et al., 2012). The
NCDC dataset in HAWQS spans the time period of 1961 to 2010.

(2) PRISM: PRISMwas developed by the PRISM Climate Group at Or-
egon State University (PCG, 2019) and is officially endorsed by
the U.S. Department of Agriculture Natural Resources Conserva-
tion Service (USDA-NRCS, 2019). PRISM data are defined on a
2.5 min degree grid, which calculates a climate-elevation regres-
sion for each grid cell of digital elevation model (DEM). Stations
included in the regression are assigned weights based primarily
on the similarity of physiographic characteristics (Daly et al.,
2008; Gao et al., 2017). PRISM data are available in HAWQS for
the time period of 1981 to 2015.

(3) Livneh: Livneh dataset is derived from observations at NCDC co-
operative observer (COOP) stations across the continental United
States (CONUS). Both temperature and precipitation were
gridded to 1/16° using the synergraphic mapping system
(SYMAP) algorithm (Livneh et al., 2013; ESRL, 2019). Long-
term daily climatic data are provided in the Livneh dataset for
1981 to 2010 (ESRL, 2019).
4.2.1. UMRB climate data distributions and NCDC temperature data
anomalies

The spatial distributions of average annual precipitation and air tem-
perature from 1983 to 2005 (Figs. 2 and 3) provide further insights re-
garding the differences between the weather datasets. The trends in
spatial distribution of precipitation across the UMRB are similar be-
tween the NCDC, PRISM and Livneh datasets (Fig. 2), with highest an-
nual precipitations occurring in the southeast versus the lowest
annual precipitation in the northwest. The trends in spatial distribution
of annual average temperature across the UMRB are also similar among
three weather datasets (Fig. 3), with a clear gradient of increasing tem-
perature from the north to south. However, the distribution of theNCDC
temperature data reveals that some subwatersheds in the northwest
Table 3
Calibration input parameters, default values in HAWQS, allowable ranges, type of calibration a

Parameters Description

CN2 Initial SCS runoff curve number for moisture condition II
ALPHA_BF Baseflow alpha factor (1/days)
GW_DELAY Groundwater delay time (days)
GWQMN Threshold depth of water in shallow aquifer required for return flow to occ
GW_REVAP Groundwater “revap” coefficient
RCHRG_DP Deep aquifer percolation fraction

REVAPMN
Threshold depth of water in the shallow aquifer for “revap” or percolation
deep aquifer to occur (mm)

ALPHA_BF_D Alpha factor for groundwater recession curve of the deep aquifer (1/day)
ESCO Soil evaporation compensation factor
CANMX Maximum canopy storage (mm)
SLSOIL Slope length for lateral subsurface flow (m)
LAT_TTIME Lateral flow travel time (days)
SOL_AWC Available water capacity of the soil layer (mm H2O/mm soil)
SFTMP Snowfall temperature (°C)
SMTMP Snow melt base temperature (°C)
SMFMX Melt factor for snow on June 21 (mmH20/°C-day)
SMFMN Melt factor for snow on December 21 (mm H2O/°C-day)
TIMP Snow pack temperature lag factor

a R indicates that an existing parameter value ismultiplied by (1+ a given value), V indicates
given value is added to the existing parameter value.

b For various forest (FRSD, FRSE and FRST) land use.
c For the first soil layer.
and central part of the UMRB manifest cooler average annual tempera-
tures versus subwatersheds in the most northern part of the region;
i.e., subwatersheds located in far eastern South Dakota, southeast Min-
nesota, northern Iowa and southwest Wisconsin (Fig. 3). These “cooler
subwatersheds” do not manifest in the PRISM and Livneh data. Thus, it
is likely that these cooler subwatersheds are anomalies in the NCDC
data that may be due to errors in the original measured observations
and/or that occurred during the interpolation and averaging of the
data to create pseudo-stations at the 8-digit watershed level, both of
which would have occurred prior to inclusion within HAWQS. In con-
trast, the PRISM and Livneh data were processed for each subwatershed
by using their gridded cell values, which provides a more continuous
temperature surface for creating a single set of subwatershed tempera-
ture data. The revelation of the apparent NCDC temperature anomalies
warrants further review and probable correction of the data. However,
it is unlikely that these errors greatly affected estimates of UMRB
streamflow.

4.3. PET estimation methods

The PET conceptwas introduced by Thornthwaite (1948) as part of a
climate classification scheme. PETwasdefined as the rate of evapotrans-
piration without any limits imposed by the supply of water. Numerous
methods have been developed to estimate PET. The PM method
(Monteith, 1965; Allen et al., 2006) and HG method (Hargreaves and
Samani, 1985) are two of the PET options available in SWAT and were
tested in this study.

The PM equation combines components that account for the energy
needed to sustain evaporation, the strength of mechanism required to
remove the water vapor, and aerodynamic and surface resistance
terms. The PM equation is:

λE ¼ Δ � Hnet−Gð Þ þ ρair � cp � eoz−ez
� �

=ra
Δþ γ � 1þ rc=rað Þ ð1Þ

whereλE is the latent heatflux density (MJm−2 d−1), E is thedepth rate
evaporation (mm d−1), Δ is the slope of the saturation vapor pressure-
temperature curve de/dT (kPa °C−1), Hnet is the net radiation (MJ m−2-

d−1), G is the heat flux density to the ground (MJ m−2 d−1), ρair is
the air density (kg m−3), cp is the specific heat at constant pressure
djustment and final calibrated values.

Type of
changea

Default
values
in HAWQS

Allowable ranges Calibrated
value
for Livneh

Calibrated
value
for PRISM

Min Max

R 22–84 −0.1 0.1 0.0985 0.0526
V 0.023–0.85 0 1 0.9 0.999
A 25–323 −30 90 −12 6.880

ur (mm) A 0.7–900 −1000 1000 −422 −577
V 0.01–0.1066 0.02 0.1 0.04 0.053
A 0.01–0.33 −0.05 0.05 0.027 0.044

to the
A 264.6; 500 −750 750 206 −24

V 0 0 1 0.25 0.32
V 0.808–0.98 0.6 0.1 0.92–0.95 0.93–0.98
V 15.4 0 25 2b 2b

V 0 0 150 6.375 28
V 0 0 200 153 186
R 0.01–0.42 −0.05 0.05 0.038c −0.034c

V 1 −5 1 0.175 3.53
V 0.5 0 3 0.68 0.29
V 4.5 2 4.5 3.99 4.42
V 4.5 0 2.5 0.07 2.37
V 1 0 1 0.55 0.38

that the existing parameter value is to be replaced by a given value, and A indicates that a



Table 4
Description of the SWAT scenarios executed with baseline (HAWQS default parameters) versus scenarios that were calibrated parameters.

Scenario name Climate dataset PET method Input parameters Calibration dataset

PRISM(PM) PRISM PM HAWQS default NAa

NCDC(PM) NCDC PM HAWQS default NA
Livneh(PM) Livneh PM HAWQS default NA
PRISM(HG) PRISM HG HAWQS default NA
NCDC(HG) NCDC HG HAWQS default NA
Livneh(HG) Livneh HG HAWQS default NA
Livneh-calibrated Livneh HG Calibrated Livneh
PRISM-Livneh PRISM HG Calibrated Livneh
NCDC-Livneh NCDC HG Calibrated Livneh
PRISM-calibrated PRISM HG Calibrated PRISM
Livneh-PRISM Livneh HG Calibrated PRISM
NCDC-PRISM NCDC HG Calibrated PRISM

a NA= not applicable.
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(MJ kg−1 °C−1), ezo is the saturation vapor pressure of air at height z
(kPa), ez is thewater vapor pressure of air at height z (kPa), γ is the psy-
chrometric constant (kPa °C−1), rc is the plant canopy resistance
(s m−1), and ra is the diffusion resistance of the air layer (aerodynamic
resistance; s m−1).

The original HG equation (Hargreaves and Samani, 1985) is the form
used in SWAT as follows:

λE0 ¼ αpet � Δ
Δþ γ

� Hnet−Gð Þ ð2Þ

where λ is the latent heat of vaporization (MJ kg−1), E0 is the potential
evapotranspiration (mm d−1), αpet is a coefficient, Δ is the slope of the
saturation vapor pressure-temperature curve de/dT (kPa °C−1), γ is
the psychrometric constant (kPa °C−1), Hnet is the net radiation
(MJ m−2 d−1), and G is the heat flux density to the ground
(MJ m−2 d−1).

The PM and HG methods vary considerably in the amount of re-
quired inputs. The PMmethod requires solar radiation, air temperature,
relative humidity and wind speed but the HGmethod requires air tem-
perature only. Daily solar radiation, relative humidity and wind speed
inputs were generated by the weather generator within SWAT, because
daily precipitation and air temperature are the only measured climatic
data available.

4.4. Calibration approach and evaluation criteria

The SWAT-CUP platform (Abbaspour, 2015; SWAT, 2019) is a soft-
ware package with a web-based interface, which facilitates automatic
calibration and/or uncertainty analyses for SWAT applications via
Table 5
The USGS gauge sites used for streamflow calibration and validation in this study, includ-
ing location, gauge site IDs, hydrologic units and reported drainage area.

Gauge site River State Used for USGS
station

Hydrologic
unit

Drainage
area
(km2)

St. Paul Mississippi MN Calibration 05331000 7,010,206 95,312
Clinton Mississippi IA Calibration 05420500 7,080,101 221,703
Grafton Mississippi IL Calibration 05587450 7,110,009 443,665
Augusta Skunk IA Validation 05474000 7,080,107 11,168
St. Croix
Falls

St. Croix WI Validation 05340500 7,030,005 16,162

Durand Chippewa WI Validation 05369500 7,050,005 23,336
Joslin Rock IL Validation 05446500 7,090,005 24,732
Muscoda Wisconsin WI Validation 05407000 7,070,005 26,936
Royalton Mississippi MN Validation 05446500 7,010,201 30,044
Wapello Iowa IA Validation 05446500 7,080,209 32,375

Keosauqua
Des
Moines

IA Validation 05446500 7,100,009 36,358

Jordan Minnesota MN Validation 05446500 7,020,012 41,958
Valley City Illinois IL Validation 05446500 7,130,011 69,264
manipulation of the large number of text files associated with a typical
SWAT project (prior to the release of SWAT+; see Bieger et al., 2017).
SWAT-CUP allows users to control the initial range of parameters and
supports the most accurate identification of the parameter optimum
values by automatic or manual calibration of SWAT projects. There are
several algorithms incorporated in SWAT-CUP to help with the auto-
matic calibration process: Sequential Uncertainty Fitting (SUFI-2), Parti-
cle Swarm Optimization (PSO), Generalized Likelihood Uncertainty
Estimation (GLUE), Parameter Solution (ParaSol), and Markov Chain
Monte Carlo (MCMC). The SUFI-2 algorithmwas used formodel calibra-
tion in this study. This algorithm can map all of the uncertainties for
each parameter (expressed as uniform distributions or ranges) and at-
tempts to capture most of the measured data within the 95% prediction
uncertainty (95PPU) of the model in an iterative process. It requires
fewer simulations to complete a calibration/uncertainty project (Yang
et al., 2008) and is highly recommended for the calibration of SWAT
models (Arnold et al., 2012).

Parallel processing was also used in this study, since it can speed up
the calibration process by parallelizing the simulations in SUFI-2. The
speed of the parallel processing depends on the characteristics of the
computer. For example, if the computer has 8 central processing units
(CPUs), the parallel processing module can utilize all 8 CPUs so that a
200-run iteration can be divided into 8 simultaneous runs of 25 each
per CPU. For a large-scale SWAT model, the utilization of the parallel
processing option results in substantially faster overall simulation
times versus using just a single 200-run CPU submission.

The SUFI-2 algorithmwas set to identify the optimumparameters by
using the Nash-Sutcliffe modeling efficiency (NSE) statistic (Krause
et al., 2005) as the key objective function. However, the results were
also evaluated according to the coefficient of determination (R2;
Krause et al., 2005), percent bias (PBIAS; Moriasi et al., 2007) and
Kling-Gupta efficiency (KGE; Gupta et al., 2009). Values for NSE, R2

and PBIAS on a monthly scale were evaluated per criteria suggested
by Moriasi et al. (2007, 2015); i.e., NSE values ≥ 0.50, R2 values ≥ 0.6
and PBIAS values ≤ ± 25% (Moriasi et al., 2007) or ≤±15% (Moriasi
et al., 2015) are judged to be satisfactory. Patil and Stieglitz (2015) im-
plied that simulated values could be regarded as satisfactory with a KGE
value N0.6. The KGE statistics are designed to provide an improved cri-
terion by incorporating error compensation for the bias and variability
components (Roy et al., 2014; Zhu et al., 2016). Graphical comparisons
between the simulated and measured streamflow values were also
used to assess the accuracy of the model output.

5. Results and discussion

5.1. Climate dataset analysis

Table 6 lists the dailymean temperature (°C), average annual precip-
itation (mm) and other uncalibrated average annual water balance
components (mm) that were predicted for the UMRB using the three
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weather datasets and two PET methods during the 23-year simulation
period. The Livnehdata setwas found to have the largest average annual
amount of precipitation (837.2 mm) and highest daily mean tempera-
ture (8.2 °C) among the three weather datasets. In contrast, the respec-
tive average annual precipitation for the NCDC and PRISM data sets was
836.1 mm and 831.5 mm, and the respective daily mean NCDC and
PRISM temperatures were 8.0 °C and 7.9 °C. Overall, there were small
differences in the annual average precipitation (5.7 mm maximum)
and temperature (0.3 °C maximum).

The Livneh data also generated the largest amounts of surface runoff,
lateral flow, groundwater, soil water andwater yieldwhen simulated in
combinationwith the PMmethod (Table 6). The predicted annual aver-
age water yield for the Livneh data was 380.6mm, versus 323.7 mm for
PRISM and 363.1 mm for NCDC. This was due primarily because the
Livneh data produced the lowest estimated annual average PET of
707.8 mm among the three weather datasets, as compared to
856.9 mm and 746.2 mm for PRISM and NCDC, respectively. The differ-
ent weather data set inputs resulted in maximum differences of
56.9 mm in water yield and 149.2 mm in PET for the uncalibrated sim-
ulations. These trends are also reflected in the ratios of annual ET/pre-
cipitation (ET/P) and annual water yield/precipitation (WY/P)
reported in Table 6; e.g., the lowest ET/P and WY/P ratios were found
for Livneh(PM) and Livneh(HG), respectively.

Considerably higher annual ET and PET values were estimatedwhen
the three weather data sets were simulated in combinationwith theHG
method, resulting in much lower predicted water yield and key water
yield components; i.e., surface runoff, lateral flow and groundwater
flow (Table 6). There was also considerable variation in the responses
of the three weather datasets to the two PET methods, especially for
the Livneh data set. The Livneh data resulted in the lowest estimated
ET and PET when used in combination with the PM method, but pro-
duced the highest ET and PET estimates when simulated with the HG
method (Table 6). Consequently, the Livneh data generated the highest
and lowest water yields when executed with the PM and HG methods,
respectively.

In addition to comparing the spatial distribution of average annual
precipitation and temperature, the differences between the monthly
mean precipitation and daily mean temperature during the 23-year un-
calibrated SWAT simulations are presented in Fig. 4. The PRISM data
generated smaller amounts of precipitation as compared to the NCDC
data in most months, especially during the May to September growing
season. The cumulative difference between PRISM and NCDC during
the growing season accounted for 85% of the total annual average differ-
ence between the two data sets. However, the Livneh data precipitation
amounts were larger versus NCDC for most months, except for March,
August, November and December. The Livneh data precipitation
amount was greater during the growing season, while it was slightly
smaller during the non-growing season, relative to the NCDC data.
With regard to daily temperature, there are distinct seasonal variations
between the monthly differences. Both PRISM and Livneh tend to be
warmer during the summer months and colder during the winter pe-
riod, as compared to the NCDC data. Fig. 4 further shows that the Livneh
data had the highest daily temperature among three weather datasets
in spring and summer, while the PRISM data set results in the lowest
temperature in winter.

5.2. Land use data analysis

Table 7 represents average annual precipitation (mm), ET (mm) and
water yield to the reach (mm) predicted for different UMRB land uses
using the three weather datasets and two PET methods during the 23-
year simulation period. The average annual amount of precipitation
for urban areaswas 847.6mm, whichwas greater than the correspond-
ing annual average precipitation levels of 843.7 mm for cropland,
832.1 mm for grassland and 820.8 mm for forest. The differences in
the annual average precipitation (from 3.9 to 26.8 mm) are primarily
caused by the uneven spatial distribution of both precipitation and
land use.

The highest ET levels were predicted for the composite urban areas
when the PM method was simulated in combination with the three
weather datasets. On average, the annual ET for the urban areas was
526.6 mm, versus 513.1 mm for cropland, 493.4 mm for grassland and
383.5 mm for forest (Table 7).

In contrast, forest was predicted to have the highest annual water
yield of 436.9 mm, followed by grassland (337.9 mm), cropland
(332.6 mm) and urban area (325.8 mm). Also, the forest areas tend to
generate more runoff in response to the Livneh climate data as com-
pared to the NCDC or PRISM climate data. This is in accord with the var-
iation of runoff for the whole UMRB in Table 6.

Among all land use types, the predicted ET amounts ranked from
high to low as follows: forest (684.3 mm) N urban areas
(641.2 mm) N cropland (620.0 mm) N grassland (596.2 mm). The
highest annual average water yield was produced by grassland
(236.8 mm), as compared to 226.7 mm, 212.3 mm and 141.6 mm for
cropland, urban areas and forest, respectively. Overall, Table 7 shows
that the estimated impacts of land use on the hydrology varied consid-
erably in response to thedifferent climate data sets and/or PETmethods.
For example, the highest and lowest annual average water yields were
estimated to be generated by forested areas when simulated with PM
and HG methods, respectively. With the HG method, it is indicated
that cropland (dominated by corn and soybean) may increase
streamflow because of decreased evapotranspiration. The results of
the HG method are consistent with the work of Zhang and Schilling
(2006) that assessed the effect of land use on streamflow in Mississippi
River.
5.3. PET methods analysis

Fig. 5 shows the monthly variations of ET, PET and water yield pre-
dicted by the six uncalibrated SWAT scenarios (Table 4), which again
are averaged over the period of 1983 to 2005. The experimental results
show that the predicted annual distribution of ET and PET vary quite
similarly in response to the two PET methods. Both the ET and PET
start rising after January in the winter period, peak in July, and then de-
scend during the remaining fall and winter months (Fig. 5a–b). During
the growing season (May to September), the SWAT-predicted ET and
PET amounts calculatedwithHG are considerably higher versus the cor-
responding PM-based estimates. However, the gap between the HG-
and PM-estimates is much smaller during the non-growing season
and become virtually negligible in winter. The predicted water yield
patterns are similar for the two PET methods, except that the peaks
occur in June and the ascents to and declines from the peaks are more
gradual (Fig. 5c). The HG method generated smaller water yields as
compared to the PM method, but the differences are greater during
the growing season.

The ratio of ET/PET relative to corresponding precipitation from
1983 to 2005 are presented respectively on an annual basis and
growing season basis in Fig. 6. Fig. 6a reveals that the ET/PET ratios
steadily increased as precipitation increased. Consistently higher ra-
tios of ET/PET were predicted with the HG method across the full
range of precipitation amounts. Ratios of ET/PET estimated with the
PM method range from 0.52 to 0.69 on annual scales while ratios of
ET/PET predicted with the HG method range from 0.53 to 0.74. This
result underscores that the HG method results in a higher rainfall
use efficiency for the SWAT UMRB model. The ET/PET ratios reveal
a similar tendency during the growing season periods (Fig. 6b). The
ET/PET ratios are predicted to be higher during the growing season
due to the growth of the crops. In general, lower ET/PET ratios
imply that crops and other vegetation are not supplied with suffi-
cient water needed for ET and growth, and thus may experience
greater water stresses (Chen et al., 2010).



Table 6
Average annual values (mm) of hydrological components and daily mean temperature (°C) over the UMRB, for the different combinations of climate data and PETmethods, based on the
applications of the uncalibrated HAWQS SWAT model during 1983 to 2005.

Scenario Precipitation Daily mean temperature surface runoff lateral flow Groundwater flow Soil water ET PET Water yield ET/Pa WY/Pb

PRISM(PM) 831.5 8.0 204.6 40.9 25.7 267.9 508.2 856.9 323.7 0.56 0.43
NCDC(PM) 836.1 7.9 227.2 46.7 30.5 285.5 470.6 764.2 363.1 0.61 0.39
Livneh(PM) 837.2 8.2 235.7 49.6 35.0 295.2 451.7 707.8 380.6 0.54 0.45
PRISM(HG) 831.5 8.0 141.9 24.0 18.3 231.4 620.4 958.6 212.4 0.74 0.26
NCDC(HG) 836.1 7.9 145.3 26.2 18.7 238.3 615.9 934.9 219.7 0.75 0.26
Livneh(HG) 837.2 8.2 128.1 22.7 18.8 228.9 641.7 961.3 193.9 0.77 0.23

a ET/P = the ratio of annual ET/Precipitation.
b WY/P = the ratio of annual Water yield/Precipitation.
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5.4. Flow calibration and validation

Table 3 lists the allowable ranges and types of calibration adjust-
ments thatwere performed for the selected calibration parameters. Sur-
face runoff and baseflow were calibrated simultaneously. The primary
calibration parameters adjusted for surface runoff were the curve num-
bers (CN2), which represented different land conditions. Seven param-
eters related to groundwater (ALPHA_BF, GW_DELAY, GWQMN,
GW_REVAP, RCHRG_DP and REVAPMN) were adjusted to improve the
agreement between observed and simulated streamflows (Table 3).
Five snow parameters (SFTMP, SMTMP, SMFMX, SMFMN and TIMP)
were also adjusted in this study (Table 3) to better reflect snowmelt
magnitude and hydrograph shapes.

The Last two columns in Table 5 represent the two different sets
of calibrated parameter values that were obtained for the respective
Livneh-calibrated and PRISM-calibrated scenarios. The subset of cal-
ibration parameters and allowable ranges were the same for the
Livneh- and PRISM-based calibration processes. Because the perfor-
mance of the PRISM and Livneh data sets were similar within
SWAT (Figs. 2 and 3), consistent adjustment trends occurred for
the majority of the parameters. For example, values of CN2,
ALPHA_BF and RCHRG_DP increased for both scenario calibrations
relative to default values in HAWQS. However, different trends in
the final calibrated values resulted for a smaller subset of parameters
between the two calibration phases; e.g. GW_DELAY and REVAPMN,
where the calibrated values decreased for one calibration phase ver-
sus increased values for the other calibration phase (both calibration
processes resulted in positive values for both parameters). This does
notmean those two sets of parameters are contradictory. It should be
noted that the goal of the SUFI-2 algorithm application is not to find
the so-called “best simulation” in such a stochastic procedure but in-
stead to find the 95PPU that brackets some or most of the observed
Fig. 4. Box plots of monthly differences for (a) precipitation and (b) daily mean temperature. F
absolute difference (°C).
data (Abbaspour, 2015). Hence, the calibrated values (Table 3) do
not represent the “best parameter” but rather the fitted value within
a certain range.

Time series plots of measured versus simulated total streamflow on
an aggregated monthly time scale for the three calibration sites (Fig. 1)
in response to the Livneh-calibrated scenario are presented in Fig. 7. The
solid blue triangles represent the measured monthly streamflow that
was derived from daily measured streamflows (USGS, 2019). The
black solid line represents the simulated flowbased on the uncalibrated
baseline SWAT model (using default HAWQS input parameters). The
baseline SWAT model generally tracked the seasonal variance pattern
including the peaks and recessions, although there is an obvious under-
estimation of the observed streamflows by the simulated streamflows
for all three calibration gauge sites (St. Paul, Clinton and Grafton). The
red solid line represents the predicted monthly streamflow after cali-
bration was completed. The calibration process resulted in increased
predicted streamflows including peak streamflow estimates that are
more consistent with observed peak streamflows during the summer
periods, although some peak streamflows were still underestimated
(especially for Grafton). Winter low streamflow periods were generally
still underpredicted, especially versus the observed streamflows for
Clinton during November to February. Overall, the magnitude and tem-
poral variation of the simulated streamflows matched the measured
streamflows, indicating a realistic representation of the observed
hydrographs by the model.

Table 7 presents the statistical results for comparison of the SWAT
simulated monthly streamflows versus corresponding observed
streamflows for both the calibration and validation gauge sites under
Livneh-calibrated scenario. The results indicate satisfactory monthly
NS values (N0.5 per the criteria suggested by Moriasi et al. (2007,
2015)) for all the 3 calibration gauges and most of the 10 validation
gauge sites within the UMRB. However, NS values were b0.5 for the
or precipitation, percent difference (%) is displayed. Temperature values displayed are the



Table 7
Average annual values (mm) of hydrological components for different land uses, based on the application of the uncalibrated HAWQS SWAT model during 1983 to 2005.

PET method Land use Precipitation ET Water yield

PRISM NCDC Livneh Average PRISM NCDC Livneh Average PRISM NCDC Livneh Average

PM Cropland 843.7 848.0 848.8 846.9 546.9 502.3 490.2 513.1 296.7 344.6 356.5 332.6
Forest 820.8 826.4 827.5 824.9 409.3 381.5 359.7 383.5 408.5 440.7 461.6 436.9
Grassland 832.1 835.7 838.0 835.3 525.5 488.6 466.0 493.4 304.4 343.1 366.1 337.9
Urban area 847.6 852.8 853.5 851.3 556.5 521.4 502.0 526.6 293.4 332.4 351.5 325.8

HG Cropland 843.7 848.0 848.8 846.9 613.9 602.5 643.4 620.0 229.6 245.1 205.4 226.7
Forest 820.8 826.4 827.5 824.9 674.5 682.4 695.9 684.3 147.3 144.9 132.6 141.6
Grassland 832.1 835.7 838.0 835.3 586.8 587.9 613.8 596.2 243.2 245.4 221.9 236.8
Urban area 847.6 852.8 853.5 851.3 630.3 632.3 660.9 641.2 219.6 222.5 194.8 212.3
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two UMRB subregions that drain to Muscoda and Royalton (Table 7).
Weaknesses were also reflected in the other statistics calculated for
these two regions. This may be due in part to an under-representation
of the impact of natural lakes and/or wetlands in the two regions,
which can attenuate peak streamflows and maintain considerable stor-
age of streamflows in low-flow periods. The percentages of these lake
and wetland land uses, which are not captured well by the current
HAWQS wetlands parameterization, are the highest for the Muscoda
and Royalton drainage areas among the 10 different validation gauge
sites.

The R2 statistics ranged from 0.54 to 0.81, which indicates that the
majority of the simulated streamflow trends replicated the counterpart
observed streamflows well, considering the R2 criteria of 0.6 proposed
byMoriasi et al. (2015). Almost all of the PBIAS results (Table 8) are ac-
ceptable per the criterion of ±25% deviation suggested byMoriasi et al.
(2007), except for Valley City (37.30%). Most of the PBIAS results also
meet the more stringent criteria of ±15% proposed by Moriasi et al.
(2015), with the exception being Grafton (19.74%), Muscoda (17.12%),
Royalton (−20.31%) and Valley City (37.30%). The positive PBIAS that
was calculated for the majority of gauge sites reveals that there was
an underestimation bias for the simulated streamflows. The KGE values
for three calibration stations were N0.7; i.e., 0.76, 0.70 and 0.73 for St.
Paul, Clinton and Grafton, respectively (Table 7). For the validation loca-
tions, the lowest KGE value was 0.52 for Valley City while the highest
KGE was 0.84 for Joslin. All of the computed KGE statistics met the
criteria of 0.6 suggested by Patil and Stieglitz (2015), except the KGE
values determined for Royalton (0.58), Keosauqua (0.57) and Valley
City (0.52). Overall, the validation statistics verify the calibration pro-
cess and were even stronger for some gauge sites.

5.5. Comparison of model performance evaluation

Fig. 8 summarizes all of the evaluated criteria values for six cali-
brated scenarios (Table 4) and the ensemble mean at the 10 validation
gauge sites (Fig. 1 and Table 5). Statistical values that are considered
Fig. 5.Monthly variations for (a) ET, (b) PET, and (c) Water Yield, based on the applications of
used: black are Penman-Monteith method, red are Hargreaves method. (For interpretation of t
article.)
“satisfactory” lie within the rose color background in Fig. 8a–d. Almost
all of the R2 values are acceptable (N0.6) with the exception of the St.
Croix Falls station in Wisconsin (Fig. 8a). For Augusta and Valley City,
themean R2 values are N0.8, which indicates a strong linear relationship
between observed flow and simulation flow. The NSE values deter-
mined for the sites of Augusta, Durand, Wapello, Keosauqua, Jordan
and Valley City are all satisfactory (N0.5) as shown in Fig. 8b. For
Muscoda and Royalton, the NSE values were found to be unacceptable
for most of the scenarios, which indicates that additional calibration is
likely required for these two independent basins. The majority of
PBIAS values are within the “satisfactory” range (≤±25%) as suggested
by Moriasi et al. (2007) except for the gauge site located at Valley City,
where streamflows are considerably underestimated resulting in a
PBIAS N 40% (Fig. 8c). However, Fig. 8c also shows that some of the com-
puted PBIAS values for seven other gauge sites lie outside of the more
stringent criteria of ±15% proposed by Moriasi et al. (2015). Fig. 8d re-
veals thatmost of the KGEmean values for the six scenarios are N0.6 ex-
cept for St. Croix Falls, Royalton and Valley City. There are also some
large differences between scenarios in the KGE criterion for specific
gauge sites. For example, the KGE statistics range from 0.75 to 0.85 for
the Livneh-calibrated, PRISM-Livneh and NCDC-Livneh scenarios versus
0.5 to 0.6 for the PRISM-calibrated, Livneh-PRISM andNCDC-PRISM sce-
narios at Joslin.

Most of the statistics for the PRISM-Livneh andNCDC-Livneh scenar-
ios are very close to the corresponding statistics found for the Livneh-
calibrated scenario. This implies that the PRISM and NCDC data are
adaptable to themodel that was calibrated with the Livneh data despite
someminor differences in the calculated statistics (Fig. 8). Likewise, ap-
plication of the NCDC data and Livneh data also result in similar effects
for the calibrated model driven by PRISM data. The model performance
was very strong at some gauge sites in response to different climate
datasets. For example, the statistics determined for the Augusta and
Wapello stations all lie in the satisfactory range. However, unacceptable
results, according to the criteria suggested byMoriasi et al. (2007, 2015)
occurred for some stations for one or more evaluation criteria; e.g., R2
the uncalibrated HAWQS SWATmodel during 1983–2005. Colors denote the PET method
he references to color in this figure legend, the reader is referred to the web version of this



Fig. 6.Ratio of ET/PET alongwith precipitation based on the applications of the uncalibratedHAWQS SWATmodel from 1983 to 2005, on an (a) annual basis, and (b) growing season basis.
Colors denote the PET method used: black are Penman-Monteith method, red are Hargreaves method. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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and NSE values at St. Croix Falls, NSE at Muscoda, and NSE and KGE at
Royalton. This may have been caused by the weakness of model adapt-
ability to spatial variability at the subwatershed level. It should also be
noted that for some gauge sites, the model estimated streamflow
value was even more precise with the alternative climate datasets
than with the driving dataset; i.e., NSE and KGE values for the PRISM-
Livneh and NCDC-Livneh scenarios are both higher than the Livneh-
calibrated scenario at Augusta, Durand and Valley City. These differ-
ences in model performance that occurred between the three climate
Fig. 7.Monthly flows at calibration gauge sites. Observed are measured flow data from USGS
Livneh dataset, and calibrated are simulated flow after calibrating.
datasets are likely due primarily to differences in the spatial distribution
of precipitation and temperature (Fig. 3). However, it is possible that ac-
curacy in precipitation and temperature measurements also effect the
ability of SWAT to replicate UMRB streamflows; e.g., the previously de-
scribed apparent errors in the NCDC temperature for the subset of
subwatersheds in the western and central part of the basin.

It can be concluded that the execution of the UMRB SWATmodel re-
sulted in different performance levels across all of the calibrated exper-
imental scenarios. However, it is difficult to compare or rank the six
stations, uncalibrated are flow outputs of uncalibrated HAWQS/SWAT model when using



13M. Chen et al. / Science of the Total Environment 720 (2020) 137562
different scenarios in a straight forwardway. To overcome this issue and
to provide additional insights regarding the outcomes of statistical anal-
ysis, a Global Performance Indicator (GPI) is introduced to assess the
combined effects of the individual statistical indicators (Behar et al.,
2015; Despotovic et al., 2015; Jamil and Akhtar, 2017). The values of
all of the statistical indicators are scaled between 0 and 1.

These scaled indicators are then subtracted from their correspond-
ing median values respectively. Finally, the obtained differences are
summed up using appropriate weight factors. The GPI indicator i is de-
fined as

GPIi ¼
X4

j¼1

α j ~yj−yij
� �

ð3Þ

where ~yj is the median of scaled values of indicator j, yij is the scaled
value of indicator j for scenario i, αj equals 1 for the indicator PBIAS,
and equals −1 for other 3 indicators. As illustrated in Eq. (3), the GPI
in this study is a multiplication of four statistical factors: R2, NSE,
PBIAS and KGE. A higher value of GPI indicates improved accuracy of a
scenario between the observed data and simulated data.

The GPI rankings of the six calibrated experimental scenarios at the
10 validation gauge sites are reported in Table 8. For instance, the
NCDC-PRISM scenario was ranked first at Augusta while the Livneh-
calibrated scenario ranked sixth. The best overall performing climate
dataset based on the highest consistent rankwas PRISM, due to average
rankings of the PRISM-Livneh scenario and PRISM-calibrated scenarios
of 2.2 and 2.9 (Table 8), respectively. In contrast, the NCDC-Livneh and
NCDC-PRISM scenarios were ranked 3.5 and 4.0, respectively. The
Livneh data was ranked in the last positions among the three climate
datasets on average, with 4.1 for Livneh-calibrated and 4.4 for Livneh-
PRISM. This does not mean that the Livneh data cannot be applied in
the UMRB SWAT model but it may result in a weaker performance
than PRISM or NCDC in some subwatersheds. The Livneh data is also
highly ranked at some stations; i.e., it was ranked in the third place at
St. Croix Falls, Joslin and Jordan for the Livneh-calibrated scenario, and
in first place at Royalton for the Livneh-PRISM scenario.

5.6. Reflections on results relative to previous UMRB SWAT studies

The NSE and R2 calibration/validation statistical results computed
between the SWAT-simulated and measured streamflows in this study
compare favorably with corresponding statistics reported in previous
studies that mostly ranged between 0.5 and 0.9 (Table 2). The primary
exceptions were validation gauge sites located in the northern part of
the UMRB system (Joslin, Muscoda, Royalton and St. Croix Falls) that
manifested weaker statistics (Table 5 and Fig. 8). This was likely due
in part to the more rigorous spatial validation approach used in this
study in which the calibrated parameters (Table 3), that were deter-
mined for 3 gauge sites (Fig. 1 and Table 5), were then simulated for
Table 8
Monthly streamflow statistics for calibration and validation gauge sites.

Gauge site Used for R2 NSE PBIAS KGE

St. Paul Calibration 0.78 0.77 5.95 0.76
Clinton Calibration 0.76 0.58 7.07 0.70
Grafton Calibration 0.76 0.66 19.74 0.73
Augusta Validation 0.80 0.73 −8.36 0.62
St. Croix Falls Validation 0.54 0.54 −0.37 0.61
Durand Validation 0.66 0.60 13.22 0.75
Joslin Validation 0.75 0.70 6.64 0.84
Muscoda Validation 0.61 0.30 17.12 0.64
Royalton Validation 0.65 0.29 −20.31 0.58
Wapello Validation 0.82 0.77 3.11 0.66
Keosauqua Validation 0.68 0.62 −14.74 0.57
Jordan Validation 0.81 0.79 6.30 0.73
Valley City Validation 0.81 0.50 37.30 0.52
the 10 validation sites (Fig. 1 and Table 5) without any further adjust-
ments. In addition, two other reasons may have contributed to the
weaker results within the HAWQS-based SWAT simulations of these
northern subregions: (1) the lack of accounting for ponds, wetlands
and other non-stream water bodies (as previously noted), which may
have particularly affected the water balance results at these specific
gauge sites, and (2) inadequate representation of forest growth param-
eters and algorithms,whichhas beendocumented as aweakness in pre-
viously reported SWAT applications (Yang et al., 2018; Yang and Zhang,
2016) and would be of particular importance in these northern subre-
gions because forest is a dominant land use in the areas that drain to
these gauge sites.

The most directly comparable previous study to the application re-
ported here was the analysis described by Qi et al. (2019a), who com-
pared the effects of the NCDC, NLDAS2 and partial-NLDAS2 climate
data sets on SWAT streamflow predictions for 11 gauge sites within
the UMRB. They found that all three climate data sets resulted in satis-
factory replication of UMRB measured streamflows, but that the
NLDAS2 data set produced the most accurate results relative to the
other two data sets which was likely due to the inclusion of measured
solar radiation, relative humidity, and wind speed data (versus just
measured precipitation,minimum temperature andmaximum temper-
ature data). Their findings are similar to what was found in this study;
i.e., all three climate data sets produced acceptable results but the
PRISM climate data set generated the most accurate SWAT-
streamflow predictions compared to the NCDC and Livneh climate
data sets. Overall, the Qi et al. (2019a) statistical results were generally
stronger than the comparative statistics computed in this study. This
may have been partly due to the fact that Qi et al. calibrated and vali-
dated SWAT streamflows using a split-time approach for each of the
11 gauge sites included in their application. Qi et al. also accounted for
subsurface tile drainage in UMRB subregions that are characterized by
low slope and poorly drained soils; tile drainage was not incorporated
in the HAWQS-based SWAT models developed for this study. Subsur-
face tile drains are primary sources of dischargewater and soluble nutri-
ents (e.g., nitrate) to stream networks in intensely tile areas as
documented in several previous studies that focused on UMRB
subwatersheds (Jha et al., 2010; Beeson et al., 2014; Panagopoulos
et al., 2015; Teshager et al., 2016; Gassman et al., 2017; Jones et al.,
2018; Schilling et al., 2019).

In summary, the SWAT models that were developed relatively rap-
idly within HAWQS for this study were successful in replicating UMRB
streamflows for most of the gauge sites that were evaluated within
the calibration or spatial validation phases. However, future improve-
ments are needed to better represent specific aspects of the UMRB sys-
tem including incorporation of non-streamwater bodies and subsurface
tile drainage. These and other improvements can provide improved es-
timates of streamflowaswell asmore accurate depiction of nutrient and
other pollutant transport in the region.
6. Conclusions

The SWAT model was developed for the UMRB by using the on-line
data and other resources provided by HAWQS. The uncalibrated model
was used to evaluate the impacts of three spatial climate datasets
(PRISM, NCDC and Livneh) and two PET estimation methods (HG and
PM) on UMRB hydrologic processes. A comparison of climate datasets
showed that the Livneh data had the highest precipitation and temper-
ature levels during the growing season fromMay to September. The dif-
ferences in precipitation and temperature inputs between the three
climate data sets results are a primary factor in the SWAT-estimated dif-
ferences in streamflow, ET and other hydrological outputs. Regarding
the impact of the two PET methods, higher annual ET and PET values
were calculatedwith HGmethod versus the PMmethod for all three cli-
mate data sets. This is because the SWAT-predicted ET and PET amounts



Table 9
Ranking of scenarios according to GPI at 10 validation gauge sites.

Scenario Augusta St.Croix Falls Durand Joslin Muscoda Royalton Wapello Keosauqua Jordan Valley City Average ranking

Livneh-calibrated 6 3 3 3 4 4 4 5 3 5 4.0
PRISM-Livneh 2 2 2 1 3 5 1 4 1 1 2.2
NCDC-Livneh 4 1 1 2 2 6 6 6 5 2 3.5
PRISM-calibrated 3 4 4 4 1 3 2 1 4 3 2.9
Livneh-PRISM 5 6 6 6 6 1 3 3 2 6 4.4
NCDC-PRISM 1 5 5 5 5 2 5 2 6 4 4.0
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are considerably higher with HGmethod versus the corresponding PM-
based estimates during the growing season.

The UMRB SWAT scenario performances were evaluated on a
monthly time step according to four statistics: coefficient of determina-
tion (R2), percent bias (PBIAS), Nash-Sutcliffemodeling efficiency (NSE)
and Kling-Gupta efficiency (KGE). Parallel processing and spatial valida-
tion were used in the calibration and validation of such a large hydro-
logic system, which improved the execution speed greatly and
captured the spatial variation in runoff. The results of the calibration
and validation phases showed that the SWAT model based on the
Livneh dataset and HG method replicated streamflows well at most of
the monitoring stations (three calibration points and ten validation
points), indicating that the model could adequately predict long-term
water yield in UMRB. After replacing the Livneh dataset with PRISM
and NCDC, the model performances for validation points are still satis-
factory on the whole despite some differences that occurred per the
Fig. 8. The summary of 4 criteria values for 10 validation gauge sites. The rose background ind
depicts the ±25% PBIAS criteria suggested by Moriasi et al. (2007) while the dashed lines in 8
of the references to color in this figure legend, the reader is referred to the web version of this
computed statistics. This substitutability between weather datasets
also revealed that the calibrated SWAT model, which was based on
the PRISM data, resulted in in mostly satisfactory results. In addition,
theGlobal Performance Indicator (GPI)was used so that all six of the ex-
perimental scenarios that were based on a calibrated version of the
model could be evaluated with a single parameter and easily ranked.
Based on the ranking of GPI, the PRISM data was found to be the stron-
gest climate data set among the three climate data sets.

However, uncertainties in the available climate data and variations
in other spatial data need to be further evaluated and improved for
large-scale watershed modeling such as the UMRB system simulated
here. This is especially true for the NCDC climate data which exhibited
unexpected anomalies in the temperature data (Fig. 3) that should be
resolved in future versions of HAWQS. In addition, incorporation of
non-stream water bodies, subsurface tile drainage and other aspects of
the UMRB system, that were not simulated in this study, are needed
icates the “Satisfactory” performance range for each criterion. The rose background in 8c
c represent the ±15% PBIAS criteria reported by Moriasi et al. (2015). (For interpretation
article.)
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to more accurately simulate streamflows and pollutant transport
throughout the stream network.

Based on the results of this study, the HG method would be recom-
mended to be applied in the UMRB SWAT model because it resulted in
a higher range of predicted ET/precipitation ratioswhich ismore consis-
tent with the limited estimates reported for the region (Liu et al., 2013).
It is also recommended that the PRISM climate data be selected for
UMRB SWAT applications built in HAWQS based on the findings ob-
tained in this research. Finally, the results of this study also confirm
that future users of HAWQS should conduct testing of any SWATmodels
built in the system, regardless of the watershed that is being analyzed.
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