The Sixth International Soil and Water Assessment Tool Southeast Asia Conference 24-25 October 2019, Siem Reap, Cambodia

Perspectives and experiences on Conservation Agriculture for Sustainable Intensification in Southeast Asia

Yuji Niino

Land Management Officer

Regional Office for Asia and the Pacific

Food and Agriculture Organization (FAO) of the United Nations

A triple Challenge for agriculture

- More food, in quantity, quality and diversity, everywhere for everyone (availability, acessibility, utilisation, stability)
- Adapt to Climate Change
- Contribute to mitigate Climate Change
 - Agriculture and Land use = 30% of emissions
 - Needs to be part of the solution ...

Overlaps, Synergies and Trade-offs

What means Climate-Smart Agriculture?

Transform agriculture to enhance the achievement of national food security and development goals in the light of global challenges

ww.fao.org/climatechange/climatesmart

Towards climate-smart agricultural landscapes

Practices + Policies and institutions + Financing

Agricultural Sector or Sub-sector and Practices	Adaptation	Mitigation	Climate smart agriculture
Сгор			
Conservation agriculture	Х	Х	Х
Integrated pest management	X	Х	Х
System for rice intensification	X	Х	X
Livestock			
Improved pasture management	Х	Х	Х
Improved grazing management	Х	Х	Х
Improved manure management	Х	Х	Х
Forestry			
Agroforestry	Х	Х	Х
Sustainable forest management	Х	Х	Х
Afforestation, reforestation and forest restoration		Х	
Fishery			
Decreased use of fish meal and fish oil feeds		Х	
Reduce excessive fishing capacity		Х	
Diversification of species	Х		
Land management			
Sustainable land management	Х	Х	Х
Improve crop and grass land management	Х	Х	Х
Restoration of degraded lands and organic soils	Х	Х	Х
Water management			
Irrigation modernization	Х	Х	Х
Wet-and-dry irrigation in paddy fields	Х	Х	Х
Rainwater harvesting	Х	Х	Х
Cross-sector			
Efficient energy use	Х	Х	Х
Reduced post-harvest losses and waste recycling	Х	Х	Х
Disaster risk management	Х		
Breeding of new crop, plant and animal varieties	Х		

Sustainable Crop Production Intensification

- Highest possible production
- Environmental footprint < recovery capacity

Technical objectives

- Agricultural land productivity
- Natural capital and flow of ecosystems services

Simultaneously!

- Enhanced input-use efficiency
- Use of biodiversity natural and managed (and carbon) to build farming system resilience
- Contribute to multiple outcome objectives at farm, community & landscape scales – food and agriculture system
- Rehabilitation of degraded agricultural land and agro-ecosystems But how?

Soil & Ecosystem Health

Agriculture must, literally, *return to its roots* by rediscovering the importance of healthy soil, and rehabilitating its ecosystem services.

A healthy productive soil is a *living system* to be managed as a 'complex' biological system.

Mobilize the whole ecosystem rather than fight or degrade it, and enhance natural capital and the flow of ecosystem services.

No *single* solution but all solutions in agricultural lands need to be based on Conservation Agriculture principles and locally formulated practices.

3 Principles of ecological sustainability

Empirical and scientific evidence internationally shows

- No or minimum mechanical soil disturbance by – seeding or planting directly into untilled soil
- Enhance and maintain organic matter cover on the soil surface – using crop residues and cover crops to protect & feed soil life
- **Diversification of species** -- both annuals and perennials in associations, sequences and rotations

Conservation Agriculture, together with other good practices

Sustainable Land Preparation Planting holes, ripping or mulching, direct drill

Once soil brought to good condition, avoid its unnecessary disturbance, and plant seeds through the mulch

'Plantio Direto' = Direct Drilling of soya immediately after wheat harvest. Source: 'O Meio Ambiente e o Plantio Direto', p.27

Residue retention distinguishes Conservation Agriculture from conventional farming systems, which are characterized by leaving the soil bare and unprotected, exposed to climatic agents.

Water infiltration, just after a thunderstorm

DIREKTSAAT semis direct zero tillage

PFLUG labour plow

(THOMAS, 2004)

Benefits of CA Gains in Rainfall Infiltration Rate with CA Less flooding – improved water cycle

Landers 2007

soil health and adverse effect of tillage agriculture

COMPARISON

A FARMER'S TRIAL – CLODS OF TOPSOIL FROM ADJACENT PLOTS, PARANÁ, BRAZIL (Shaxson 2007)

PRO-BIOTIC

Topsoil after 5 years with retention of crop residues and no-till seeding.

ANTI-BIOTIC

Topsoil after regularly-repeated disk tillage, without retention of residues

Ecological Base of CA

Conservation Agriculture Drivers for adoption:

- **Erosion:** North America, Brazil, China
- **Drought:** China, Australia, Kazakhstan, Zambia
- Cost of production: global
- Ecosystem services global

Conservation Agriculture Impacts:

- Increase of yields and production
- Less fertilizer use (-50%) less pesticides
- Less machinery and labour cost (-70%)
- Higher profit
- More stable yields lower impact of climate (drought, floods, heat, cold)
- Lower environmental cost (water, infrastructure)

Documented benefits of CA for a Ariture food security and environment

Small scale -- Paraguay, Tanzania, Lesotho, Zimbabwe Large scale – Canada, Brazil, Australia, Argentina

publications

Global CA area (million ha) over time History and Development

CA area in Asia over time

Extent of CA adoption ('000 ha) in Asia in 2008/09, 2013/14 and 2015/16

		•	
	CA area	CA area	CA area
Country	2008/09	2013/14	2015/16
China	1,330.00	6,670.00	9,000.00
Kazakhstan	1,300.00	2,000.00	2,500.00
India	-	1,500.00	1,500.00#
Kyrgyzstan	-	0.70	50.00
Turkey	-	45.00	45.00
Syria	-	30.00	30.00#
Korea, DPR	-	23.00	23.00#
Iraq	-	15.00	15.00#
Uzbekistan	-	2.45	10.00
Azerbaijan	-	1.30	1.30#
Lebanon	-	1.20	1.20#
Pakistan	-	-	600.00
Iran	-	-	150.00
Bangladesh	-	-	1.50
Tajikistan	-	-	1.20
Vietnam	-	-	1.00
Cambodia	-	-	0.50
Laos	-	-	0.50
Total	2630.00	10,288.65	13,930.20
% difference		291.2 since 2008/09	429.7 since 2008/09
			35.4 since 2013/14

#from 2013/14.

Experiences in Asia:

 China promotes CA officially as means against drought, dust storms, erosion; subsidies for equipment

- DPR Korea promotes CA to fight hunger
- Special challenge: convert paddy rice to CA
- India, Bangladesh und Pakistan experiment with components of CA
- Growing interest in CA in SE Asia (Cambodia, Laos)

History and Adoption of CA

Pakistan/India

CASINES

Surface mulching with zero till – wheat, Pakistan

No-till in Kazakhstan

History and Adoption of CA

Kazakhstan

CA for CC adaptation

Experiences in China

No-till in China Wheat No-tilled into maize stubble

Example #3

CA for CC adaptation

CHINA: innovation with <u>raised-bed</u>, <u>zero-till</u> SRI field; measured yield 13.4 t/ha; Liu's 2001 yield (16 t/ha) set provincial yield record and persuaded Prof. Yuan Longping

All crops can be seeded in No-till systems

Potatoes under No-till after rice in North Korea

More complex systems

WE LUS

2 to 3 tons/ha

Rice-bean on maize / Brochigrio

Maize & rice bean intercropping

Southeast Asia

Alternatives

- intensive commercial agricultural systems based on high chemical input
- solution to restore soil fertility and degraded environment (acidic or salty or polluted soils)
- erosion control both at plot and landscape levels
- Intensification and diversification of agriculture in mountainous areas

Timor-Leste https://vimeo.com/103779391

Lao PDR https://vimeo.com/117622628

Timor-Leste

Enhancing Food and Nutrition Security and Reducing Disaster Risk through the Promotion of Conservation Agriculture (2013~)

https://www.usaid.gov/timor-leste/project-descriptions/enhancing-food-and-nutrition-security-and-reducing-disaster-risk-through-promotion-conservation

Timor-Leste

1.0

0.0

GailenailBahuni

Gariguai

Watu Haco

Lacoliu

Alfaca

Buruma

GurucalPair.

(tn/ha)

https://www.youtube.com/watch?v=nbOXwXeqKvg

Indonesia

Reducing Disaster Risks Caused by Changing Climate in Nusa Tenggara Barat and Nusa Tenggara Timur Provinces in Indonesia (2013~)

Indonesia

History and Development

FAO's role: Support to member countries:

- Policies and Institutions:
 - policy support for upscaling CA; coherent policies (mechanization/CA, extension)
 - institutions, supporting infrastructure: education/training, science/technology, commercial infrastructure (input supply)
- Field level: farmer-groups/associations; proof of concept and field evidence with farmer learning processes (FFS, earthworm clubs...)
- FAO DRR/M uses CA as concept

History and Development

Issues around CA adoption and scaling:

- CA is a concept no blueprint
- Local adaptation works best in a farmer discovery/ learning process – participation of private sector/ input suppliers is crucial for uptake
- CA works through synergy hence all three components are important (to some degree)
- Understanding of the concept is important for practice solutions for CA – in some cases "gradual" approaches work, in others full adoption is better

Conclusions

- CA addresses the core problem for sustainable agriculture with the deepest environmental footprint: *soil tillage*
- For SCPI there is no "alternative" to CA
- CA has many local adaptations and there are different routes to adoption
- FAO therefore mainstream CA as approach to cropping

Action Areas for Scaling-up CA

increase investments in sustainable agricultural practices

- public and private investment
- policies and regulations land tenure over multiple seasons; market guarantees

enhance research, learning and knowledge sharing

 identify practices and technologies affordable to small-scale farmers (limited income, market access, inputs)

Action Areas for Scaling-up CA

diversify agricultural mechanization and improve access to inputs

- regular supply of reduced-tillage equipment and seed stock for cover crops
- manufacture of CA equipment locally
- identify and market multifunctional seed stock

stablish new market opportunities

- niche and "green" markets
- establishing GAP or organic certification processes
- carbon sequestration compensation mechanisms

Action Areas for Scaling-up CA

- develop institutional framework and national roadmap
- Integrate and coordinate initiatives among policy-makers, financial institutions, private sector, administrators, research institutions, advisory and knowledge exchange bodies, with the farmers
- **STRONG ADVOCACY!**

