

2019 SWAT October 21-26, 2019 Siem Reap, Cambodia

SWAT-SEA Conference 2019

Streamflow and sensitivity modeling Using SWAT for an Ib watershed of, India

Leelambar Singh

Research Scholar

(<u>leeli.singh@gmail.com</u>) https://orcid.org/0000-0002-0734-4004

Department of Civil Engineering

National Institute of Technology, Tiruchirappalli, Tamilnadu, India

Introduction

Research Methodology

Material and Methods
SWAT Model
Description of Study Area

Results and Discussion

- ✓ SWAT Hydrology Calibration
- ✓ Water Balance Components

Conclusion

Introduction(Why this study?)

For water resource management in the watershed, it is necessary to make reliable predictions on the pattern of discharge including scale and frequency during the period of runoff, sediment and water yield.

Hydrological models build based on the dominant hydrological processes are necessary to accomplish the various tasks in the planning and operation of the integrated water resources management projects

Hydrological model is employed to draw consistent predictions on the stream discharge of such watersheds. Results of hydrological models sensitively convey various factor including spatial assessment of hydrological cycle and parameter estimation scheme.

Introduction(Why this study?)

High, medium, and low-performing states on water resource management

A collaborative (and grassroots-based) approach to watershed development and management is necessary for ensuring longterm benefits.

Source: NITI Aayog Report 2019

Cont..

- Traditional precipitation observations from rain gauges suffer from several limitations, including Gauge adjustment, sparse gauge networks, data gaps, reporting time delays, and limited access to available data
- In many areas the ground-based observations are usually sparse or unevenly distributed, due to economic or terrain limitations. For example, in several developing countries the groundbased rainfall observation networks have always been relatively sparse.
 - Spatial rainfall distribution can be improved with the inclusion of ancillary data such as radar, satellite and topography data.
 - Tropical Rainfall Measuring Mission
 - A Joint Mission Between The US and Japan (Global coverage 50° S-50°N)
- □ The Climate Prediction Center (CPC) is a <u>US federal agency</u> that is one of the <u>National</u> <u>Centers for Environmental Prediction</u>, which are a part of the NOAA. It is providing analysis climate data.

SWAT Hydrological Model

Soil and Water Assessment Tools (Arnold et al. 1998)

- SWAT is continuous, long-term, and distributed-parameter model designed to predict the impact of land management practices on the hydrology and sediment and contaminate transport in agriculture watersheds.
- SWAT subdivide a watershed into sub-basin connected by a stream network, and further delineates HRUs(Hydrologic Response Unit) consisting of unique combination of land cover and soils within each sub-basin.
- The hydrological cycle as simulated by SWAT is based on the water balance equation:

$$SW_t = SW_0 + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_a - W_{seep} - Q_{gw})$$

 $SW_t = Final soil water content (mm)$ $SW_0 = Initial soil water content on day i (mm)$ $R_{day} = Amount of precipitation on day i (mm)$ $Q_{surf} = Amount of surface runoff on day i (mm)$ $E_a = Amount of evapotranspiration on day i (mm)$ $W_{seep} = Amount of water entering the vadose zone from the soil profile on day i (mm)$ $Q_{gw} = Amount of return flow on day i (mm)$ $\overline{O}^{SM} = Amount of LEIMLM HOM ON (m) I (MMM)$

Data Type	Source	Scale/period	Description
Topography	United States Geological Survey	30m	Digital elevation model
Soil	FAO Digital Soil Map of the World (DSMW)	1/50000	Soil classification and physical properties
Landuse	Earth explorer	30m	2005 landuse classification from the Landsat satellite image
Weather Data	Tropical Rainfall Measuring Mission https://trmm.gsfc.nasa.gov/	1998-2011	Daily Precipitation, daily Maximum and daily minimum temperature
Discharge data	Central Water Commission, India	1993-2011	Monthly stream flow(cumec) at outlet

Raster input of SWAT Model

Methods adopted for hydrology

Runoff (SCS curve number)

The curve number method was developed by the USDA Natural Resources Conservation Service, which was formerly called the Soil Conservation Service or SCS Curve number It is a most common method adopt to predict the runoff

Evapotranspiration (Penman-Monteith) (Monteith, 1965)

- Penman-Monteith method is recommended as the sole ETo method for determining reference evapotranspiration
- Penman combined the energy balance with the mass transfer method and derived an equation to compute the evaporation from an open water surface from standard climatological records of sunshine, temperature, humidity and wind speed

Research Methodology

SWAT Calibrated Parameter

Parameter	Description	Lower limit	Upper limit	Optimal Value
rCN2	Initial SCS runoff curve number for moisture condition II	-0.2	0.2	0.106
vALPHA_BF	Baseflow alpha factor Baseflow recession constant	0	1	0.675
vGW_DELAY	Groundwater delay time (days)	0	450	87.750
vGWQMN	Threshold depth of water in the shallow aquifer required for return flow to occur (mm)	0	1500	1147.50
vESCO	Soil evaporation compensation factor	0	1	0.4550
vEPCO	Plant uptake compensation factor	0	1	0.95
vGW_REVAP	Groundwater "revap" coefficient	0.02	0.2	0.0425
vREVAPMN	Threshold depth of water in shallow aquifer for "revap" to occur (mm)	0	1000	197.50
aRCHRG_DP	Deep aquifer percolation fraction	-0.05	0.05	0.0075
rSOL_AWC()	Available water capacity of soil layer (mm H2O/mm soil)	-0.25	0.25	-0.0775
rSOL_BD()	Moist bulk density (g/cm3)	-0.25	0.25	-0.1225
rSOL_K()	Saturated hydraulic conductivity	-0.25	0.25	0.1575
rSOL_Z()	Depth from soil surface to bottom of layer	-0.25	0.25	-0.2425
rSURLAG	Surface runoff lag time	-5	5	-1.75
vCANMX	Maximum canopy storage	0	10	3.95
vCH_K2	Effective hydraulic conductivity in main channel alluvium (mm/h)	0	200	35.00

SWAT hydrological parameters sensitivity analysis

✓ A sensitivity analysis was conducted on the SWAT model parameters before the calibration.

Sensitivity Analysis

Parameter	t-Stat	P-Value	Rank
SURLAG.bsn	-0.13	0.90	17
EPCO.hru	-0.13	0.89	16
CANMX.hru	-0.27	0.78	15
GW_REVAP.gw	-0.31	0.75	14
GWQMN.gw	-0.41	0.68	13
ESCO.hru	-0.45	0.65	12
REVAPMN.gw	-0.55	0.58	11
GW_DELAY.gw	0.67	0.50	10
SOL_BD.sol	-1.15	0.26	9
SOL_Z.sol	-1.27	0.21	8
SOL_K.sol	-1.37	0.17	7
SOL_AWC.sol	-1.84	0.07	6
RCHRG_DP.gw	-2.07	0.04	5
CH_K2.rte	-2.41	0.02	4
CH_N2.rte	-3.25	0.00	3
CN2.mgt	6.08	0.00	2
ALPHA_BF.gw	8.15	0.00	1

SWAT Calibration and validation

Cont..

Water balance components	Amount(mm)
Precipitation; Precip	1329.1
Potential evapotranspiration;PET	1195.8
Actual evapotranspiration; ET	498.9
Percolation out of soil	269.38
Ground water flow contribution; GW_Q	203.07
Deep Aquifer Recharge;DA_RCHG	15.49
Surface Runoff; SURF	547.75
Total Water Yield; WYLD	777.39
Lateral Soil flow contribution; LA_Q	11.22

Water balance components

Year	PRECIP(mm)	SURQ(mm)	PERC(mm)	GWQ(mm)	LATEQ(mm)	ET(mm)	WYLD(mm)
1993	1320.15	537.55	10.97	184.3	265.33	496.65	745.82
1994	1894.47	984.11	14.92	314.59	404.01	494.55	1333.32
1995	1393.72	566.84	11.06	195.82	237.9	558.31	791.7
1996	1298.24	586.77	10.52	181.67	245.15	479.36	793.38
1997	1484.21	606.07	12.51	240.18	317.86	494.48	874.83
1998	1393.05	497.33	12.6	214.35	273.82	650.65	741
1999	1340.84	552.85	12.01	224.43	304.48	477.65	805.64
2000	897.06	250.74	8.73	148.74	186.32	459.51	422.71
2001	1302.87	495.49	11.32	211.79	287.2	502.72	733.06
2002	1008.07	341.61	8.47	112.56	158.76	501.47	474.73
2003	1546.92	693.22	12.63	216.43	327.99	490.5	935.11
2004	1376.97	582.86	11.52	242.79	287.73	517.21	855.89
2005	1134.3	443.19	9.19	147.9	193.79	477.25	614.47
2006	1352.8	549.43	11.61	201.86	284.16	518.88	776.52
2007	1314.77	513.06	11.68	222.89	297.99	492.04	763.74
2008	1533.38	696.59	12.91	278.42	347.15	479.88	1007.39
2009	1148.74	438.56	9.89	169.23	222.09	473.13	633.55
2010	950.23	326.79	7.9	106.86	163.26	447.67	452.63
2011	1561.35	744.22	12.72	243.52	343.25	468.16	1014.89
Mean	1329.06	547.7516	11.218	203.07	270.96	498.951	777.388

PRECIP = precipitation; SURQ= surface runoff; GWQ = Ground water contribution to stream flow; ET= evapotranspiration & WYLD= water yield

Cont..

Summary and conclusions

In this study, we tried to calibrate the SWAT (Soil and Water Assessment Tool) model parameters for check feasibility of model in Ib river catchment and validate other periods and it showed good results.

- The SWAT Hydrology calibration results in Ib catchment
 - For the calibration, the parameters SCS_CN(SCS curve number for moisture condition), ALPHA_BF(Baseflow factor and Manning's n value for main channel (CH_K2) were the most sensitive and important for the water balance accounting.
 - The NSE of calibration and validation was obtained 0.75 and 0.62
- **Water Balance components results in Ib Catchment**
 - In case of surface runoff much of surface runoff coming from high elevation and northern region less sensitive to runoff.
 - Groundwater flow contribution is high in northern region.
 - Drought years are more affected (i.e. 2000 and 2010, due to less than average rainfall and also very low percolation).
 - Hydrological components are in decreasing trends(Rainfall, percolation and water yield etc).

2019 SWAT October 21-26, 2019 Siem Reap, Cambodia

Thank You..