Development of an Earth Observation System for the management of Water resources based on SWAT

P. Cau¹, C. Soru, D. Muroni, C. Milesi, P. A. Marras, & G. De Giudici²

1) Center for Advanced Studies, Research and Development in Sardinia, Italy - CRS4 (http://www.crs4.it). Email: pierluigi.cau@gmail.com

2) University of Cagliari, Italy - UNICA (https://www.unica.it/). Email: gbgjudic@unica.it
Presentation outline and objectives

1. Background and the European research directions
2. Description of the Earth Observation System
3. Technologies
4. Interoperability and Interfaces
5. Conclusion
The EU is actively supporting the development of web-based and mobile applications as promising technological tools to support citizen science.

Some initiatives:

Copernicus is the European Union's Earth Observation Programme, looking at our planet and its environment for the ultimate benefit of all European citizens. It offers information services based on satellite Earth Observation and in situ (non-space) data.

GEOSS - https://www.earthobservations.org/geoss.php

GEO’s Mission is to build the Global Earth Observation System of Systems (GEOSS). GEOSS is a set of coordinated, independent Earth observation, information and processing systems. GEOSS links these systems to strengthen the monitoring of the state of the Earth.
SUPREME and TESTARE

These are 2 projects funded by the European ERANET MED Program and by the Sardinian Region respectively. Within these projects, one important aim is to develop a web based Earth Observation System for the water domain based on in situ monitoring data and modelling outputs.

The ODM2 data model for Measurements and Observation have been adopted and specialized to store earth observation data: http://www.odm2.org/

SWAT has been chosen as the hydrological model and applied to study:
1. Cyprus
2. Jordan
3. Sardinia (still to be done)
The study sites

http://acqua.crs4.it:8080/SWAT_Cyprus_HG_natural/

http://acqua.crs4.it:8080/SWAT_Jordan_MP_natural/
Challenges and gaps

There is the need to strengthen the connection between earth observation data both in situ and remote and modelling applications.

Models, such as SWAT, are advanced tools to extract meaning and knowledge from Earth Observation data.

Models have also the potential to better predict transformation that natural resources undergo due to external causes (e.g. human pressures and Climate Change).

There are still huge GAPS between Science, end users, industry and citizens. Good science, data and knowledge must be shared (e.g. through open data, by developing web applications, by adopting interoperability standards, etc.).
The earth Observation System exposes currently 2 modules:

SWAT APP to process SWAT Output

SWAT APP digests SWAT data and expose on the WEB dynamic reports

ODM 2 APP to manage EO data
It exposes an environment to insert and manage Observation & Measurement (O&M) data.

Update, Insert and Delete operations are possible.

PostgreSQL is the RDBMS engine that hosts the physical implementation of the ODM2.

The physical ODM2 schema comprises **Core, Sampling Features, Provenance, Results**.

ODM2 has been specialized and extended to meet requirements of users.

To view it in action: http://acqua.crs4.it:8080/alto/ODM2/dashboard
The data model
Reports and Applications

Sampling Features Report

- N. OF ACTIONS: 6
- N. OF VARIABLES: 7
- N. OF SAMPLING FEATURES: 77
- N. OF RESULTS VALUES: 2582

General statistics of the selected sampling feature

- Number of variables: 1
- Number of Time Series Results Values: 50

Variable	Number of measures
Water pumped by domestic wells; residents and landowners not using public supply. Non-agriculture wells. | 25
Provides users with the ability to publish their SWAT simulation on the web and to facilitate the report production mechanism.

- Shares data, knowledge through a web-based environment.
- Exposes through its API interoperability services to foster a broader user experience.
- Bridge the gap between science and end users/citizens. SWAT models can be viewed by anyone.
- All the model-related data are organized into complex Relational DB infrastructures.
- Exploit user-roles policies to define complex security and access strategies and differentiate the interfaces.
SWAT Data processing

The SWAT model uses several different data formats

A client-server procedure imports the data into relational databases on the server.

Imported data include: output.rch, output.sub, ArcSwatDB/*.dbf, ESRI Shapefiles, etc.

SWAT APP natively implements JDBC connections.

The PostGIS engine is used for data archiving of GIS data.
Data flow

Each model run becomes a scenario stored in the db infrastructure.
Interoperability - API

The **SWAT APP and Alto API** are developed in the Java programming language to access and use all data and services.

The **API** offers a uniform way of identifying and accessing to resources, and thus increasing the interoperability between applications.

The **SWAT APP and Alto API** explicitly targets needs of third party products.
GUIs: the Dashboard

SwatApp

Your model

Settings
Watershed
HRUs
Climate
Databases

Model inputs and outputs

Input tables
Output tables
Build charts

Read Swat input tables
Read Swat output tables
Build charts with water balance parameters
Example of a dynamic report: Time series Chart
Example of a dynamic report: the water balance
Alto is a **full-stack, modular, low code development framework** to design and develop professional web information systems.

The software exposes:

- a visual user friendly web editor with a powerful GUI.
- a fast and flexible processing system for App development.
- a suite of widget engines to create complex HTML objects such as GIS maps, tables, graphs, search engines, forms, etc.
- a distributed Collaborative Working Environment where large communities can cooperatively create Web applications.

It transparently combines, in one space, technologies to access, query and process complex data infrastructures.

For the description of the framework go to: www.altoframework.com/
Through easy to use web interfaces it is possible to connect to RDBMS (e.g. Postgis, Mysql, Oracle) explore the data and shape a variety of objects and widgets:

- Connections
- queries
- charts,
- maps,
- tables,
- forms,
- dropdowns,
- searches,
- etc..
A multi user – multi project Environment

Once ready, the application can be downloaded (as .war file) and then deployed to any tomcat / jboss webserver!
ODM2 APP and SWAT APP are web based software that can be extended to the needs.

Both APPs have been developed using the “Alto Framework”, namely Alto, a development framework, for constructing spatially enabled web applications.

ODM2 and SWAT APP + Alto are a problem-solving environment for the Environmental Sciences for the integration of

- resources for
 - communication
 - computation
 - data storage
 - visualization
- instrumentation
- human know-how
SWAT APP works in tandem with the pre-processing ArcSWAT.

SWAT APP is a web interface interfaced with a fully programmable environment in the back end to construct spatially enabled applications on the WEB.

It has been widely tested on real case studies on available datasets: Cedrino (Italy), San Sperate (Italy), Black Sea Catchment, Cyprus, Jordan ...

SWAT APP project is being developed at:

http://acqua.crs4.it:8080/alto

To use the system, send an email to: pierluigi.cau@gmail.com
Acknowledgments

This work has been supported by:
Euro-Mediterranean Cooperation - ERANET Program
Top down project - RAS – Regione Autonoma della Sardegna (Italy)

A special thank goes to Amine Hammami and Pawel Wislo for their hard work