SWAT International Conference17-19 July, 2019

Spatial variability of sediment loads under climate and land use changes in the Raba River catchment, Poland

Paulina Orlińska-Woźniak¹, Ewa Szalińska², Paweł Wilk¹

¹ Institute of Meteorology and Water Management - National Research Institute, Warsaw, Poland ² AGH University of Science and Technology, Cracow, Poland

AGH

Introduction

- 1. As already reported sediment loads can be altered through the climate and land use changes.
- 2. SWAT enables sediment spatial variability analyses, and also tracking sediment transport in the catchment.
- 3. Assessment of spatial variability for sediment loads released for the catchments has a crucial meaning
 - reservoir management (silting)
 - water quality assessment

Raba river

Researcha Rinducted in the people it is appensing the significant puscesses set patter the the significant puscesses set of the second locals why danged to be a second set of the second secon

Scenarios

The analysis involve the results of variant scenarios regarding climate and land use change forecasts for this catchment and their impact on sediment loads in reaches compared to baseline simulation, emphasizing its spatial distribution.

	P1 [%]	P2 [%]	T1 [°C]	T2 [°C]
	2021-2050	2071-2100	2021-2050	2071-2100
winter (Dec-Feb)	9.5	16.74	1.1	2.29
spring (Mar-May)	8	15.89	0.84	1.83
summer (Jun-Aug)	2.63	1.21	1.01	1.68
autumn (Sep-Nov)	2.11	4.25	0.95	1.88

EURO-CORDEX downscaling¹

predicted change in	predicted change in
forest area [%]	urban area [%]
-2060	-2060
16	6

COMB1 COMB2 P1+T1+LU P2+T2+LU

DYNA-Clue for Carpathian Mountains²

¹Mezghani, A., Piniewski, M. et al.(2017). CHASE-PL Climate Projection dataset over Poland -bias adjustment of EURO-CORDEX simulations. ²Price, B. et al.(2017). ...: the case of future forest cover expansion in the Polish Carpathians and Swiss Alps.

Erosion intensity

- Soil
- Organic content in soil
- Slope
- Slope length
- Terrain shape
- Meteorology:
 - precipitation amount
 - precipitation intensity
 - rain drop sizes
- Land use

- Agrotechnical factors:
 - vegetation cover
 - crops

Water speed

- agricultural operations
- soil compaction

Results

		Standard	T	
Parameter	Estimate	Error	Statistic	P-Value
CONSTANT	-2,75194	3,03276	-0,907403	0,4155
gr1w2.AGRI	-0,596723	0,0779646	-7,65377	0,0016
gr1w2.Csl	0,230818	0,0468285	4,929	0,0079
gr1w2.FOREST	-0,0796426	0,0311243	-2,55886	0,0627
gr1w2.GLINA	-2,23632	0,432478	-5,17096	0,0066
gr1w2.LESS	-0,7648	0,0984794	-7,76609	0,0015
gr1w2.PRECIPmm	3,13669	2,13223	1,47108	0,2152
gr1w2.SAND	-0,100161	0,0784889	-1,27611	0,2710
gr1w2.Sll	1,29606	0,801813	1,61642	0,1813
gr1w2.Slope	-1,98046	0,425682	-4,65243	0,0096
gr1w2.SNOMELTmm	-0,308151	0,422162	-0,729936	0,5059
gr1w2.WYLDmm	0,160057	1,16946	0,136864	0,8978

Analysis of Variance

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model	0,588784	11	0,0535258	30,55	0,0024
Residual	0,00700942	4	0,00175235		
Total (Corr.)	0,595794	15			

R-squared = 98,8235 percent

Hierarchical Clustering

Results

Parameter	Regression
SNOMELTmm	0.58548
SYLD t/ha	0.43486
AGRI	0.32546
SAND	0.27879
PRECIPmm	0.2347
Csl	0.21897
Slope	0.18695
WYLDmm	0.1558
SILT	-0.214
FOREST	-0.2556
SII	-0.5011
CLAY	-0.5401

Conclusion

- 1. The results revealed changes in sediment loads in subbasins outlets
- 2. Additionally subbasins showed different reaction to changes in climate conditions and land use extent
- 3. Sediment load spatial variability indicates need of further investigation of erosion, transport and deposition differences in subbasins
- 4. Analysis consist of three stages:
 - designation of parameters set (sensitivity analysis for sediment load) and correlation analysis
 - for baseline simulation
 - for scenarios (COMB1, COMB2)
 - assessment of the spatial variation in sediment load reaction in subbasins for climate and land use change scenarios

Additional outcome

The performed analyses are also helpful in answering one of the key questions for future water management in this catchment:

- 1. What effects on the quantity of suspended sediment will be imposed by the expected climate changes (temperature and precipitation)?
- 2. Whether it is possible to limit this impact through alterations of the land use of the catchment?
- 3. How the forecasted changes will affect the reservoir capacity, and potentially deplete its storage time?

Thank you for your attention

Paulina Orlińska-Woźniak

Institute of Meteorology and Water Management - National Research Institute paulina.wozniak@imgw.pl