Application of SWAT in a Mountainous Region in Turkey using Remote Sensing Data

Bilal Peker, Dr. Arda Sorman

Eskisehir Technical University, Turkey

Department of Civil Engineering

Universität für Bodenkultur Wien University of Natural Resources and Applied Life Sciences, Vienna

Contact: ismailbilalpeker@eskisehir.edu.tr

<u>OUTLINE</u>

- 1. Motivation of the Study
- 2. Study Area
- 3. Data Sources & Base Model Setup
- 4. Snow Parameters Fitting using Remote Sensing Data
- 5. Automatic Flow Calibration & Validation
- 6. Snow Validation using Ground Stations
- 7. Conclusions & Recommendations

1/24

Motivation of the Study

There are several successful SWAT model applications in Turkey, however, all is about water quality, agricultural management and non-point source pollution control <u>at low elevated snowless areas</u>.

> The mountainous and snow-dominated watersheds are selected for this work, therefore snow-melt process is very important for the study area.

C*

Remote sensing data is used for the more preferable model setup in the study.

Study Area

- Turkey is a peninsula surrounded on3 sides by the sea.
- Average elevation of Turkey > 1100 m, snow is frequent.
- Most transboundary rivers are fed by snowmelt.

Two headwater basins of the Euphrates River, named as Karasu and Murat.

Data Sources

HRU Definition Data

- DEM (SRTM, 90x90 m) (3 Slope Classes for each basin)
- Land Use (Corine, 1:100 000)
- Soil (FAO, 1:5 000 000)

Climate Data

- Turkish Met. Office (Precipitation & Max./Min. Temperature)
- CFSR (Relative Humidity, Solar Radiation & Wind Speed)

Calibration & Validation Data

Turkish Hydro. Office (Discharge & Snow Ground Stations) MODIS (Cloud-Filtered Snow-covered Images)

SOIL TYPE MAPS

LAND COVER MAPS

Pasture

Forest

Range Water 6/24

Kastanozem (Kh1-2ab)

Luvisol (Lo64-3c) Cambisol (Be115-2/3c)

GAGE STATIONS (Rainfall, Temperature, Stream, Snow)

7/24

8/24

Base Model Setup

	Karasu	Murat	
Interface	ArcSWAT 2012.10_4.19		
Subbasin Threshold Area	5 000 Ha	10 000 Ha	
HRU Threshold (Soil/LU/Slope)	0/0/0 (%)	0/0/0 (%)	
Subbasin Number	41	45	
HRU Number	462	663	
Elevation Band Number	10	10	
Warm up	1999-2001 (3 yrs)	2000-2001 (2 yrs)	
Calibration Period	2002-2007 (6 yrs)	2002-2007 (6 yrs)	
Validation Period	2008-2011 (4 yrs)	2008-2011 (4 yrs)	

PROCEDURE

Snow parameters should not be calibrated simultaneously with other parameters.

(Abbaspour et al., 2017)

EXAMPLE: MURAT BASIN 2004 HYDROLOGICAL YEAR

MURAT BASIN

MODIS IMAGE

13/24

MODIS-SNOW MODIS-LAND

SWAT	MODIS	STATE
Snow	Snow	MATCH
Snow	Land	MISMATCH
Land	Snow	MISMATCH
Land	Land	MATCH

OVERLAYING

- VISUALIZATION PROCESS IS IMPLEMENTED FOR EACH SUBBASIN AND BASIN-SCALE SWE MAPS ARE OBTAINED.
- 7 DATES ARE SELECTED:

04 DECEMBER 2005 (ACCUMULATION PERIOD) 30 DECEMBER 2005 (~100% SNOW COVER) 30 MARCH 2006 (RANDOMLY) **08 APRIL 2006 (RECESSION PERIOD)** 13 APRIL 2006 (RANDOMLY) 18 APRIL 2006 (RANDOMLY) 12 MAY 2006 (~0% SNOW COVER)

13 APR 06

18 APR 06

12 MAY 06

SWAT	MODIS	STATE
Snow	Snow	MATCH
Snow	Land	MISMATCH
Land	Snow	MISMATCH
Land	Land	MATCH

BECAUSE SUBBASINS HAVE DIFFERENT ELEVATION RANGE AND

ASPECT

Adjustment of Snow Parameters & Lapse Rates

PARAMETER NAME	UNIT	FITTING VALUE	_
SFTMP	°C	1	
SMTMP	°C	0.5	
SMFMX	mm H ₂ O/°C-day	2.5	
SMFMN	mm H ₂ O/°C-day	0.5	
ТІМР	unitless	1	
SNOCOVMX	mm H ₂ O	55	
SNO50COV	unitless	0.55	
PLAPS	mm H ₂ O/km	175	
TLAPS	°C/km	-5.5	_

These values are fixed as a result of the many trials according to the physical meaning and experiences from the previous studies at the study area.

AUTO-CALIBRATION PROCEDURE

SWAT-CUP is used for model calibration.

						Fitted	Value
			Parameter Name	Initial I	Range	MURAT	KARASU
	$\left(\right)$	r_	CN2.mgt	-0.3	0.3	-0.28	-0.16
		v_	ESCO.hru	0.7	1	0.73	0.75
Determined		r_	SOL_Z.sol	-0.3	0.3	-0.21	0.3
sensitive		r_	SOL_K.sol	-0.3	0.3	-0.19	0.3
parameters.	\prec	r_	SOL_AWC.sol	-0.3	0.3	0.29	0.19
procedure,		v_	ALPHA_BF.gw	0.01	0.99	0.79	0.92
Abbaspour,2013)		v_	GW_DELAY.gw	1	50	10.69	7.53
		v_	GWQMN.gw	1	250	172.85	15.04
	V_	RCHRG_DP.gw	0.2	0.5	0.36	0.4	

Same for each basin model. 1000 simulations for 2 iterations.

HYDROGRAPHS FOR KARASU BASIN

NSE: NASH-SUTCLIFFE EFFICIENCY

R²: COEFF. OF DETERMINATION

19/24

HYDROGRAPHS FOR MURAT BASIN

NSE: NASH-SUTCLIFFE EFFICIENCY

R²: COEFF. OF DETERMINATION

20/24

Snow Stations

Station Name	Elevation (m)	Location		
Hacimahmut	1945	SUB 35	BAND 6	
Yesildere	1935	SUB 9	BAND 1	
Guzelyayla	2070	SUB 10	BAND 7	

Station Name	Elevation (m)	Location		
Haciomer	1865	SUB 8	BAND 1	
Eleskirt	1780	SUB 11	BAND 4	
Dogangun	1660	SUB 40	BAND 1	

Snow Validation

CONCLUSIONS

- SWAT was used for mountanious and snow-fed basins in Turkey.
- Before the model calibration, snow parameters were fitted with two methods that utilized with MODIS.
- Auto-calibration procedure was applied according to flow data and successful results were obtained.
- Calibrated model was validated for flow data and snow validation was done using the ground snow station data.

Models are ready for future studies!

RECOMMENDATIONS

Thank you for your attention.

Contact: ismailbilalpeker@eskisehir.edu.tr

Eskisehir Technical University, Turkey

Department of Civil Engineering – Hydraulics Division