Application of SWAT in a Mountainous Region in Turkey using Remote Sensing Data

Bilal Peker, Dr. Arda Sorman

Eskisehir Technical University, Turkey
Department of Civil Engineering

15-19 July 2019 - Vienna, Austria

Contact: ismailbilalpeker@eskisehir.edu.tr
OUTLINE

1. Motivation of the Study
2. Study Area
3. Data Sources & Base Model Setup
4. Snow Parameters Fitting using Remote Sensing Data
5. Automatic Flow Calibration & Validation
6. Snow Validation using Ground Stations
7. Conclusions & Recommendations
Motivation of the Study

There are several successful SWAT model applications in Turkey, however, all is about water quality, agricultural management and non-point source pollution control at low elevated snowless areas.

The mountainous and snow-dominated watersheds are selected for this work, therefore snow-melt process is very important for the study area.

Remote sensing data is used for the more preferable model setup in the study.
Study Area

- Turkey is a peninsula surrounded on 3 sides by the sea.
- Average elevation of Turkey > 1100 m, snow is frequent.
- Most transboundary rivers are fed by snowmelt.
Two headwater basins of the Euphrates River, named as Karasu and Murat.

<table>
<thead>
<tr>
<th>Basin Name</th>
<th>Karasu</th>
<th>Murat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area</td>
<td>2800 km²</td>
<td>5900 km²</td>
</tr>
<tr>
<td>Hypsometric Elevation</td>
<td>2100 m</td>
<td>2100 m</td>
</tr>
<tr>
<td>Min. Elevation</td>
<td>1675 m</td>
<td>1559 m</td>
</tr>
<tr>
<td>Max. Elevation</td>
<td>3156 m</td>
<td>3516 m</td>
</tr>
</tbody>
</table>
Data Sources

- **HRU Definition Data**
 - DEM (SRTM, 90x90 m) (3 Slope Classes for each basin)
 - Land Use (Corine, 1:100 000)
 - Soil (FAO, 1:5 000 000)

- **Climate Data**
 - Turkish Met. Office (Precipitation & Max./Min. Temperature)
 - CFSR (Relative Humidity, Solar Radiation & Wind Speed)

- **Calibration & Validation Data**
 - Turkish Hydro. Office (Discharge & Snow Ground Stations)
 - MODIS (Cloud-Filtered Snow-covered Images)
GAGE STATIONS (Rainfall, Temperature, Stream, Snow)
Base Model Setup

<table>
<thead>
<tr>
<th></th>
<th>Karasu</th>
<th>Murat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>ArcSWAT 2012.10_4.19</td>
<td></td>
</tr>
<tr>
<td>Subbasin Threshold Area</td>
<td>5 000 Ha</td>
<td>10 000 Ha</td>
</tr>
<tr>
<td>HRU Threshold (Soil/LU/Slope)</td>
<td>0/0/0 (%)</td>
<td>0/0/0 (%)</td>
</tr>
<tr>
<td>Subbasin Number</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>HRU Number</td>
<td>462</td>
<td>663</td>
</tr>
<tr>
<td>Elevation Band Number</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Warm up</td>
<td>1999-2001 (3 yrs)</td>
<td>2000-2001 (2 yrs)</td>
</tr>
<tr>
<td>Calibration Period</td>
<td>2002-2007 (6 yrs)</td>
<td>2002-2007 (6 yrs)</td>
</tr>
<tr>
<td>Validation Period</td>
<td>2008-2011 (4 yrs)</td>
<td>2008-2011 (4 yrs)</td>
</tr>
</tbody>
</table>
PROCEDURE

Snow parameters should not be calibrated simultaneously with other parameters. (Abbaspour et al., 2017)

1) ADJUSTMENT OF SNOW PARAMETERS (WITH MODIS) (SNOW CALIBRATION)
- Conversion SWAT SWE outputs to basin-scale from HRU-scale & comparison with snow cover area as a chart
- Visualizing SWAT SWE outputs & comparison with MODIS images as a map

2) FLOW CALIBRATION & VALIDATION

3) SNOW VALIDATION (WITH GROUND STATIONS)
SWE (mm) – SCA (%) COMPARISON

- HRU-BASED SWE
- SUBBASIN-BASED SWE
- BASIN-BASED SWE

MODIS Snow Cover Area (SCA) (%)

Areal Percentage Weights

SWAT BASIN-SCALE SWE (mm) values are obtained daily.
EXAMPLE: MURAT BASIN 2004 HYDROLOGICAL YEAR

- **Start of snow session**
- **End of snow session**
- **Beginning of recession part**
VISUALIZATION PROCESS

SWAT SWE OUTPUTS ARE HRU-BASED AT EACH ELEVATION BAND.

DERIVATION OF SUB-SWE FOR EACH SUBBASINS AT EACH ELEVATION BAND

MURAT SUB-1

Reclassified 10 Elevation Classes

SWE Value for Each Elevation Band from SWAT .snw Output

.Snw output file

SNOW

THRESHOLD SWE

LAND
• VISUALIZATION PROCESS IS IMPLEMENTED FOR EACH SUBBASIN AND BASIN-SCALE SWE MAPS ARE OBTAINED.

• 7 DATES ARE SELECTED:

04 DECEMBER 2005 (ACCUMULATION PERIOD)
30 DECEMBER 2005 (~100% SNOW COVER)
30 MARCH 2006 (RANDOMLY)
08 APRIL 2006 (RECESSION PERIOD)
13 APRIL 2006 (RANDOMLY)
18 APRIL 2006 (RANDOMLY)
12 MAY 2006 (~0% SNOW COVER)
SWE THRESHOLD CAN CHANGE

BECAUSE SUBBASINS HAVE DIFFERENT ELEVATION RANGE AND ASPECT
Adjustment of Snow Parameters & Lapse Rates

<table>
<thead>
<tr>
<th>PARAMETER NAME</th>
<th>UNIT</th>
<th>FITTING VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTMP</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>SMTMP</td>
<td>°C</td>
<td>0.5</td>
</tr>
<tr>
<td>SMFMX</td>
<td>mm H₂O/°C-day</td>
<td>2.5</td>
</tr>
<tr>
<td>SMFMN</td>
<td>mm H₂O/°C-day</td>
<td>0.5</td>
</tr>
<tr>
<td>TIMP</td>
<td>unitless</td>
<td>1</td>
</tr>
<tr>
<td>SNOCOVMX</td>
<td>mm H₂O</td>
<td>55</td>
</tr>
<tr>
<td>SNO50COV</td>
<td>unitless</td>
<td>0.55</td>
</tr>
<tr>
<td>PLAPS</td>
<td>mm H₂O/km</td>
<td>175</td>
</tr>
<tr>
<td>TLAPS</td>
<td>°C/km</td>
<td>-5.5</td>
</tr>
</tbody>
</table>

These values are fixed as a result of the many trials according to the physical meaning and experiences from the previous studies at the study area.
AUTO-CALIBRATION PROCEDURE

SWAT-CUP is used for model calibration.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Initial Range</th>
<th>Fitted Value MURAT</th>
<th>Fitted Value KARASU</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_ CN2.mgt</td>
<td>-0.3 - 0.3</td>
<td>-0.28</td>
<td>-0.16</td>
</tr>
<tr>
<td>v_ ESCO.hru</td>
<td>0.7 - 1</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>r_ SOL_Z.sol</td>
<td>-0.3 - 0.3</td>
<td>-0.21</td>
<td>0.3</td>
</tr>
<tr>
<td>r_ SOL_K.sol</td>
<td>-0.3 - 0.3</td>
<td>-0.19</td>
<td>0.3</td>
</tr>
<tr>
<td>r_ SOL_AWC.sol</td>
<td>-0.3 - 0.3</td>
<td>0.29</td>
<td>0.19</td>
</tr>
<tr>
<td>v_ ALPHA_BF.gw</td>
<td>0.01 - 0.99</td>
<td>0.79</td>
<td>0.92</td>
</tr>
<tr>
<td>v_ GW_DELAY.gw</td>
<td>1 - 50</td>
<td>10.69</td>
<td>7.53</td>
</tr>
<tr>
<td>v_ GWQMN.gw</td>
<td>1 - 250</td>
<td>172.85</td>
<td>15.04</td>
</tr>
<tr>
<td>v_ RCHRG_DP.gw</td>
<td>0.2 - 0.5</td>
<td>0.36</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Determined sensitive parameters. *(One-at-a-time procedure, Abbaspour, 2013)*

Same for each basin model.
1000 simulations for 2 iterations.
HYDROGRAPHS FOR KARASU BASIN

NSE: NASH-SUTCLIFFE EFFICIENCY

R²: COEFF. OF DETERMINATION

CAL-DAILY

Q-NSE: 0.64
R²: 0.63

VAL-DAILY

Q-NSE: 0.82
R²: 0.82

CAL-MONTHLY

Q-NSE: 0.74
R²: 0.75

VAL-MONTHLY

Q-NSE: 0.89
R²: 0.90
HYDROGRAPHS FOR MURAT BASIN

Q-NSE \[R^2 \]

CAL-DAILY

Q: 0.73

R^2: 0.74

VAL-DAILY

Q: 0.67

R^2: 0.76

CAL-MONTHLY

Q: 0.83

R^2: 0.87

VAL-MONTHLY

Q: 0.76

R^2: 0.86

NSE: NASH-SUTCLIFFE EFFICIENCY

R^2: COEFF. OF DETERMINATION
SWE Validation

Snow Stations

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Elevation (m)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hacimahmut</td>
<td>1945</td>
<td>SUB 35</td>
</tr>
<tr>
<td>Yesildere</td>
<td>1935</td>
<td>SUB 9</td>
</tr>
<tr>
<td>Guzelyayla</td>
<td>2070</td>
<td>SUB 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Elevation (m)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hacimomer</td>
<td>1865</td>
<td>SUB 8</td>
</tr>
<tr>
<td>Eleskirt</td>
<td>1780</td>
<td>SUB 11</td>
</tr>
<tr>
<td>Dogangun</td>
<td>1660</td>
<td>SUB 40</td>
</tr>
</tbody>
</table>
Snow Validation

TREND IS MATCHING
CONCLUSIONS

• SWAT was used for mountanious and snow-fed basins in Turkey.

• Before the model calibration, snow parameters were fitted with two methods that utilized with MODIS.

• Auto-calibration procedure was applied according to flow data and successful results were obtained.

• Calibrated model was validated for flow data and snow validation was done using the ground snow station data.

Models are ready for future studies!
RECOMMENDATIONS

DIFFERENT ELEVATION BAND NUMBERS FOR EACH SUBBASIN

- **SUB7**
 - Elevation: High 1706, Low 1647

- **SUB15**
 - Elevation: High 2280, Low 1626

- **SUB42**
 - Elevation: High 3291, Low 1606

Because subbasins have **DIFFERENT ELE. RELIEF, AREA AND SHAPE**

ADJUSTMENT OF ELEVATION BAND RANGES INSTEAD OF AUTOMATIC VALUES

MORE DETAILED DISTRIBUTION OF SUBBASINS
Thank you for your attention.

Contact: ismailbilalpeker@eskisehir.edu.tr

Eskisehir Technical University, Turkey
Department of Civil Engineering – Hydraulics Division