Hydrological Modelling Using SWAT+ Training Manual (v1)

Celray James Chawanda
celray.chawanda@outlook.com
Department of Hydrology and Hydraulic Engineering
Vrije Universiteit Brussel (VUB)
Contents

1. **INTRODUCTION** .. 1

2. **SETTING UP SWAT+ MODELLING SOFTWARE** .. 1

 I. QGIS VERSION 3.4 ... 1

 II. SWAT+ TOOLS .. 2

 III. MICROSOFT MPI ... 2

 IV. ACTIVATING QSWAT+ PLUGIN .. 3

3. **DATA** ... 5

 I. DIGITAL ELEVATION MODEL (DEM) .. 5

 II. LAND USE ... 5

 III. SOIL ... 5

 V. WEATHER DATA .. 5

 VI. SHAPEFILES ... 6

 VII. DATA DIRECTORY STRUCTURE .. 6

4. **MODEL SETUP** .. 7

 I. CREATE A PROJECT ... 7

 II. DELINEATE WATERSHED .. 8

 III. CREATE HRU .. 10

 IV. RUN SWAT+ MODEL IN SWAT+ EDITOR .. 12

 V. MORE OPTIONS IN SWAT EDITOR ... 15

5. **VISUALISATION OF RESULTS** .. 17

 I. MAP STATIC DATA ... 17

 I. ANIMATIONS .. 18

 II. PLOTS ... 19

6. **EVALUATE INPUTS AND OUTPUTS** .. 20

7. **CALIBRATION** .. 22

 I. MANUAL CALIBRATION .. 22

 II. SOFT CALIBRATION .. 23

 III. AUTOMATIC CALIBRATION WITH IPEAT+ .. 23

8. **ANSWERS TO CHALLENGES** ... 27

 I. CHALLENGE 1: ... 27

 II. CHALLENGE 2: ... 27

 III. CHALLENGE 3: .. 27

 IV. CHALLENGE 4: ... 27
1. Introduction

SWAT+ is a completely restructured version of SWAT, a time-continuous semi-distributed model that works on the principle of Hydrologic Response Units (HRUs). HRUs are areas of unique characteristics identified by land use, soil type, slope and catchment. Computations take place at HRU level and results are routed through stream connections to the outlet of the entire watershed. SWAT+ uses similar equations to SWAT in estimating surface runoff/infiltration, evapotranspiration, plant growth, routing and many more. However, SWAT+ provides several benefits over SWAT (Table 1).

<table>
<thead>
<tr>
<th>Table 1: An overview of differences between SWAT+ and SWAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWAT 2012</td>
</tr>
<tr>
<td>Its uses Microsoft Access database</td>
</tr>
<tr>
<td>Needs MS office licence, size limits work for smaller models</td>
</tr>
<tr>
<td>Uses fig file for stream connections</td>
</tr>
<tr>
<td>Less flexibility</td>
</tr>
<tr>
<td>Software for calibration, validation and analysis of results is available</td>
</tr>
<tr>
<td>Sub-catchments only & more</td>
</tr>
</tbody>
</table>

In this workshop, we will use SWAT+ to model robit catchment and calibrate the model. This training manual has task panels and challenge panels. The answers to the challenge panels are included at the end in the ‘Answers to Challenges’ section. Follow the tasks and make sure your results and answers to challenge panel questions match those in the answers at the end. There are also questions for discussion to help understanding some principles in SWAT+ Modelling.

2. Setting up SWAT+ Modelling Software

Before we can set up any model, we will need to make a number of installations of SWAT+ software. We will install (i) QGIS, (ii) SWAT+ tools and (iii) Microsoft MPI.

i. QGIS version 3.4

We start by installing QGIS version 3.4 (64-bit). Do this by completing Task 1.

1. Browse to https://www.qgis.org/en/site/forusers/download.html in your internet browser (Hint: if you press CTRL and click on the link, it will take you to the site).
2. Under Long term release repository (most stable), Click on QGIS Standalone Installer Version 3.4 (64 bit) to download QGIS 3.4
3. Double-click the downloaded file to install. You must use default settings (install in C:\Program Files\QGIS 3.4)
ii. **SWAT+ tools**
We also need to install SWAT+ tools. The SWAT+ tools installation package has the following available for installation.

- QSWAT+ GIS interface, a QGIS plugin,
- SWAT+ Editor (includes SWAT+ model executable)
- SWAT+ datasets database
- Optional data downloads including global weather generator and US soil data.

Complete Task 2 to install SWAT+ tools.

1. Navigate to https://swatplus.gitbook.io/docs/installation in your browser
2. Click on Download SWAT+ Installer x.y.z where x, y, z are values for version identification. (at the time of writing: Download SWAT+ Installer 1.2.0)
3. Extract the contents of the downloaded zip file and start installation by double-clicking the file, `swatplustools-installer-1.2.0.exe`
4. Check ‘Global weather generator data for SWAT+ (download)’ to download weather generator data (Figure 1)

iii. **Microsoft MPI**
Finally, we need to install the Microsoft MPI (Message Passing Interface). Modern personal computer processors allow running several tasks in parallel. We can use this to speed up the processing of raster files such as Digital Elevation Models (DEMs) by allowing QSWAT+ to take advantage of parallel processing. This is made possible with Microsoft MPI.
2. Click on MS-MPI v10.0 and select download on the page that follows.
3. Check msmpisetup.exe and click ‘Next’ to begin download.
4. Double click the downloaded file and install in the default installation directory.
 (you need administrative rights).
5. Restart your computer.

iv. **Activating QSWAT+ plugin**
After restarting your computer, and opening QGIS 3.4, the QSWAT+ plugin is not available. It needs to be activated in order to make it available for use in QGIS.

![Figure 3: Activation of SWAT+ plugin in QGIS 3.4](image)

1. Click **Plugins** and select **Manage and Install Plugins…** from the menu (Figure 3, panel a)
2. Search for SWAT in the Plugins window and mark the check box as shown in Figure 3, panel b.
3. Close the Plugins window using the close button

![Figure 4: SWAT+ Icon after Activating QSWAT+](image)

Now you will see the SWAT+ (verde symbol) button appear in one of the toolbars (Figure 4). You can open QSWAT+ and make sure that **Use MPI** is checked in the QSWAT+ Parameters (Figure 5). You are ready to start setting up your model.
Figure 5: QSWAT+ Parameters Window with ‘Use MPI’ Checked
3. Data

Our Case study is the robit catchment in Ethiopia. For this we have the following data for use with SWAT+ (Which comes with the SWAT+ tools installation).

You can download the data here: http://download.snippet-code.com/robit_data.zip

i. Digital Elevation Model (DEM)
 The resolution of the available DEM (srtm_30) is a 30m by 30m.

ii. Land use
 The land use data includes a land use raster map (roblandusenew) at 30m by 30m resolution and a lookup table (landuse_lookup.csv). The lookup table identifies the land use which a value on the raster map represents. The lookup table often lists the land uses as 4-letter code (Figure 6) which is later matched to a land use and its properties. These properties are found in a database that comes with SWAT+ tools installer (swatplus_datasets.sqlite).

iii. Soil
 The soil data includes a soil raster map (mowr_soil90) and a lookup table (soils_lookup.csv). Just as with land use data, the lookup table identifies the soils from the raster. However, the user often needs to provide another file which contains the properties of the soils listed in the soil lookup table. In our case, the file is robit_usersoil.csv.

v. Weather Data
 This includes precipitation, temperature, wind, solar radiation and relative humidity data. There is a station list file and timeseries files for each of the weather variables. The station file lists all the files that have timeseries data. Examples are given in Figure 7 and Figure 8.
vi. **Shapefiles**
There is a shapefile of rivers that are present in the robit catchment (robReach.shp) and another shapefile that has the main outlet of the catchment (MainOutlet.shp).

vii. **Data Directory Structure**
Figure 9 summarises how the data is organised in this exercise.

![Diagram: Structure of data directory]

Figure 9: Structure of data directory.
4. Model Setup

To set up the model, you need to (i) create a project and save it in a specified directory. Then go through (ii) catchment delineation, (iii) HRU definition and (iv) SWAT+ editor. We will go through the process step by step.

i. Create a project

Task 5 will create a default project structure (Figure 10) with its own project database where project information is saved (for this workshop, it will be named robit.sqlite). A reference database (which has default parameters for the model) is also copied to the project directory.

1. Start QGIS 3.4 and Click on the SWAT+ icon (S+) to open the QSWAT+ interface.
2. Click New Project and browse to the desktop (or other directory of your choice).
3. Choose Select Folder, a new box will appear asking you to enter the name of your project.
4. Type robit and click Ok.

After completing Task 5, the QSWAT+ interface shows the three main steps (Figure 11). Step 2 and Step 3 are unavailable because we first need to complete Step 1.
ii. **Delineate Watershed**

- **Create Watershed**

At this stage, we create sub-basins from the DEM by specifying area thresholds and outlet(s). We have an option to use an existing stream network to assist in the delineation, especially in relatively flat topography. The interface allows you to draw outlets for your catchment, but for this exercise, we will use an already existing shapefile.

To use MPI, set number of processes to a positive value. For most computers, 8 can be used. However, in order to have the same numbering of channels across all workshop participants, set it to 0.

![How do you decide what values to use as thresholds for delineation?](image)

1. Click on **Delineate Watershed** to show the **Delineate Watershed window** (Figure 12)
2. Clicking button 2 as shown in Figure 12 and select the file **hdr.adf** from the DEM, `srtm_30`.
3. Check the **Burn in stream network** checkbox and select the rivers shapefile (`robReach.shp`) using button 3.
4. Enter 0.09 and 0.9 sq. km for channel and stream thresholds, respectively (number 4 in Figure 12)
5. Click **Create Streams**. Wait until the streams are created.
6. Click button 5 to load the inlets/outlets shapefile (`MainOutlet.shp`).
7. Click on **Select inlets/outlets**, A **Select inlets/outlets** window will appear with two options; **Save** and **Cancel**. ▲ **Do not close it.**
8. Click and drag over the outlet (i.e draw a rectangle over the outlet) to select it.
9. Switch back to **Select inlets/outlets** window and click **Save**.
10. Click **Create watershed** and wait until watershed is created.
11. Click **Ok** to exit the window.

Inlets/outlets shapefile may have more than one outlet and inlet. This shapefile may also have reservoirs, ponds and point sources. QSWAT+ excludes the area upstream from an inlet from the model. Wherever an outlet is placed, there will be data produced by the model. As such, add outlets where you have observed data. Note that you may skip steps 7 through 9 in Task 6 if you want to use all available outlets in the shapefile.

![Figure 12: Watershed Delineation Window (reference for Task 6)](image)
QSWAT+ allows you to merge sub-basins. However, that is not necessary for this case study. After completing Task 6, channels, sub-catchment and landscape unit shapefiles are created and added to the project (Figure 13).

Create floodplain and upslope
QSWAT+ allows you to separate floodplain and upslope areas. This makes sure that HRUs are in the correct Landscape unit to separate upland processes and floodplain. There are three options for creating floodplains. In this exercise, we will use DEM inversion. In this method, the values in the DEM are inverted in such a way that ridges become streams and streams become ridges.

Complete Task 7 to create a floodplain map.

1. Click on Create under Create Landscape. Landscape Analysis window appears (Figure 14).
2. Do not change the default values, accept defaults in the DEM inversion tab by Clicking on Create. A floodplain layer is added to the map, Click Done to exit the landscape analysis window.

It is important to note that QSWAT+ has an option to add lakes. For more information on adding lakes, refer to the QSWAT+ manual.

Click Ok to close the Watershed Delineation Window.
1. Open Create HRUs Window (Figure 17) by clicking on the Create HRUs button.
2. Load land use map and soil map using buttons 1 and 2 in Figure 17 respectively
3. Import land use lookup (landuse_lookup.csv) and soil lookup (soil_lookup.csv) tables to the project database using Landuse table and Soil table dropdown menus respectively (below buttons 1 and 2). You will have to select Use csv file to do this.
4. Import the usersoil table, robit_usersoil.csv, in the same manner as above (dropdown menu 3 in Figure 17).
5. To use slope classes 0-10 and 10-9999, enter 10 in box 4 as seen in Figure 17 and click Insert.
6. Select the floodplain map generated during watershed delineation using the select floodplain map dropdown menu.
7. Check Generate FullHRUs shapefile (checkbox 5 in Figure 17) to allow mapping at HRU level during visualisation.
8. Click Read to read data into memory. Potential HRUs are created at this stage.
9. To filter out small HRUs, there are many options provided (section 6 in Figure 17). Chose Filter by Area and use 0 to keep all potential HRUs
10. Click Create HRUs to save potential HRUs data as final HRUs to project database.
QSWAT+ provides a way to eliminate short channels that often occur when there are channel junctions to the same channel close to each other. If used, LSUs that are bigger than the specified threshold in the short channel merge section (box 8 in Figure 17) are merged with the one downstream of them as long as they are in the same subbasin.

There are an option to split and exempt land uses. Refer to the QSWAT+ user manual for more information on these options.

The next time you come back to this stage to create HRUs, you do not have to read from maps again. Data read from the previous session can be loaded quickly by checking the Read from previous run option in the Read choice section.

When Task 8 is complete, Step 3 in the Main QSWAT+ window becomes available. New shapefiles are also created as shown in Figure 18 below. Use the Select report to view button to see the information on HRUs.
iv. **Run SWAT+ model in SWAT+ Editor**

We are ready to use SWAT+ editor after Task 8. SWAT+ Editor allows you to change the options for running the model including routing, ET calculation methods, land use management practices etc.. SWAT+ also allows you to import climate data and read results for visualisation. Task 9 will take us through SWAT+ Editor to run the model.

Based on the HRU report.

- a) How many HRUs are in LSU 501?
- b) What percentage of the watershed area are FRST and AGRL land cover areas?
- c) Which slope class is the most dominant in the area?
- d) What is the Land Use present in HRU 448 in LSU 292?

Challenge 1

1. **Click on Edit Inputs and Run SWAT button to open SWAT+ Editor.** A window shown in Figure 19 will open.

2. **Click Start Import to accept defaults.** This will create tables with default parameters and options which can be changed within the SWAT+ Editor interface.

3. **Click Start Editing SWAT+ Inputs.** You will see navigation sections on the left pane of the interface (Figure 20).
4. Click Weather Generator under the Climate section.
5. As stated earlier, we are using the weather generator created from cfsr world data which we added as an option during installation. Click Import Data, and check “Using observed weather data?...”. This prevents SWAT+ Editor from creating stations based on weather generator data. make sure wgn_cfsr_world is selected as table name in the wgn database. Click Start Import.
6. Select Weather Stations and click Import Data. A window for importing weather data files appears. We will use SWAT+ format for weather – change data format to SWAT+.
7. Click Browse and select the directory containing weather data (weather_swat_plus). Click Start Import. You will see one station showing (Figure 22)
8. Go to Time under simulation section and set the starting year to 1990 and the ending year to 2000. Click Save Changes.
9. Click Print in the Simulation section. Notice the warmup period (top-most value) is set to 1 year. Set it to 3.
10. Under Print Objects you can select the timestep for printing each object. Select monthly output for Channel Output and Water balance HRUoutput (Figure 23). Click Save button.
11. Click the Write file icon () then Save & Write Files (Confirm by Start Writing Files) to write files to Default Scenario TxtInOut (more in input and output files).
12. Click on Run the model () button and Run SWAT.
Figure 21: Import Weather Generator Window

Figure 22: Imported weather station

Figure 23: Select Monthly Channel Output.
More Options in SWAT Editor

Task 8 has led us through SWAT Editor and running the model without making many adaptations to our model. However, many times, you may want to change specific options based on your case study. This section highlights important adaptations that you can make in SWAT+ Editor.

- **Potential Evapotranspiration (PET)**
 Depending on the available data you may want to use a different PET calculation method. For example, if you only have Temperature data, you may choose the Hargreaves method instead of the Penman/Monteith method. In Task 9, we will change the PET calculation method to Penman/Monteith.

 1. Under the Basin section, click on Codes (Figure 24).
 2. On Potential method code combo-box, select 1 – Penman/Monteith method
 3. Scroll down and click Save Changes

 Do not navigate away from this page.

- **Routing**
 There are two methods for routing available in SWAT, Variable Storage and Muskingum. We will use the Muskingum method. You can change this on the same page you changed the PET calculation method under Water routing method.

 You can change more routing parameters such as Manning's n and time of concentration for each channel in the Hydrology & Sediment under channels in the connections section.

![Figure 24: Changing PET calculation method to Penman/Monteith Method](image)

![Figure 25: Parameters for Hydrology and Sediment for channels](image)
Land Use Management

Each HRU is assigned a Land Use Management (LUM) practice. You can change the LUM for any HRU in properties under HRUs in the connections section. In this example, there are three LUM practices: frst_lum, agrl_lum and past_lum (Figure 26).

A LUM practice is associated with Plant Communities, Management Schedule, Conservation Practice, Curve number, etc.

Plant communities

Plant communities list which crops are grown under the specified LUM practice. The corresponding file name is plant.ini

![Image of Land Use Management]

Management Schedule

The Management Schedule tells what time of the year events such as planting, harvest, irrigation applications, nutrient applications, pesticide applications, and tillage operations happen in the HRU.

There are two methods of specifying operations in Management Schedule. You can enter an operation directly in the Management Schedule or Add a reference to a schedule that already

![Image of Adding Operations to Management Schedules]
exists in the land use management decision table (lum.dtl) (Figure 27). Currently, SWAT+ Editor does not support editing of decision tables. However, you can import and export decision tables to and from CSV files. We will discuss decision tables in Part 6 (i).

Before visualisation, write files and run the model again to apply the adaptations that we have made since the last time we run the model.

5. Visualisation of results

The main QSWAT+ Window has Step 4 for visualisation, but it becomes visible after importing results to the database.

i. Map Static Data

Different variables from the results can be mapped at the landscape unit level or HRU level. Note that you can map results at HRU level only if you created the HRU shapefile during HRU creation. Follow Task 10 to visualise annual evapotranspiration results at HRU level.

1. Click on Analyse model output icon () and select Import Output to read model run results to the database.
2. Close SWAT+ Editor. Now, the QSWAT+ shows Visualise as Step 4.
3. Click Visualise in Main QSWAT+ Window. This will show Visualise Results window.
4. The Default Scenario is selected. Chose SWAT+ output table hru_wb_yr.
5. In the Chose Variables section, select et in the dropdown menu and Annual means in Chose summary section, then click Add.
7. If you do not like the lines separating HRUs, follow step 8 and 9.
8. Double-click on the layer Default et Annual means and go to Symbology. Click Change along the Symbol line and select Simple fill.
9. Select No Pen on Stroke Style then click OK to close the box. Click Apply and then OK to close the layer properties window.

After completing Task 10, you will have a map that is clear as shown in Figure 30. You can print this view to file or paper using the Print button in the Visualise Results window.
i. **Animations**

The Visualise Results window also allows you to Animate how different variables in the watershed change over time. These animations can be exported to a file for presentations.

Task 11 will guide us through animating the evolution of Surface Runoff at LSU scale.

1. Select hru_wb_mon under Chose SWAT+ output table.
2. Select the Animation tab.
3. Chose surq_gen as the variable under Set up Animation.
4. Select New in the Set up animation group.
5. There are two modes of animation: map canvas and print composer. Select the map canvas.
6. Set the speed to 5 and click on the arrow to start the simulation and watch the map canvas.
7. You can pause with the pause button and rewind to the start.
8. You can also drag the slider or use the left and right arrow keys to step through the animation.

You can save an animation by using the record function as described in Task 12.

1. Click the rewind button to rewind the animation
2. Click Start Recording and click the arrow to start the animation
3. When it reaches the end, Click Stop recording.
4. You can find the animation in Scenarios\Default\Results\ in GIF format Open and view it

Figure 30: Default Annual ET map
ii. Plots

QSWAT+ also allows you to plot results on a graph and add observed data. We are going to plot both simulated and observed flow for the main outlet in Task 13.

1. Choose channel_sd_mon under Choose SWAT+ output table (Figure 31).
2. Select the Plot tab.
3. Under the Choose observed data file section, select observedFlow.csv from the CSV directory in robit data.
4. Note that the observed data ends in 1997. Set the year under finish date to 1997.
5. The main channel of our watershed is channel 1. Enter this number in Unit and Select flo_out as variable to be plotted
6. Click Add plot and Add observed.
7. Click Plot and save file as flow_1.csv

QSWAT+ plots the graphs and also calculates some statistics to check how good is the fit of the simulated data to observations (Figure 32).

![Figure 31: Using the plot tab in visualisation window of QSWAT+](image1.png)

![Figure 32: Simulated (Default Scenario) and observed hydrographs at the main outlet of the Robit Case](image2.png)
6. Evaluate Inputs and outputs

There are a number of files that we will look at found in the TxtInOut Directory (Refer to Figure 10). It is possible to modify these files and run the model using an executable file from the SWAT Website. However, you need to be careful not to change the format. These files help us understand model inputs and outputs better. You can open all these files using notepad, notepad++ or Visual Studio Code.

- **time.sim**
 Defines the beginning and ending year of simulation

- **print.prt**
 Set warmup period and which output to print you can change the options between ‘y’ for yes and ‘n’ for no. If you want to print results as comma-separated values (CSV), you can change the csvout output (line 7 in the file, print.prt) option to yes.

- **chandeg.con**
 Shows connections between channels. The column out_tot (fifth from the last) shows the number of objects that the channel is routing flow into. If it is 0, it means that is a main outlet of the watershed.

Challenge 3

Based on the time.sim, print.prt and channel.con files.

- a) How many years were simulated in the model?
- b) Can we get flows for the year 1991?
- c) For how many simulation years will the model skip printing of results?
- d) Which channel is the main outlet channel?

- **channel_sd_[tstep].txt** (where [tstep] is timestep – mon, day, yr, aa)
 This file shows mass balance in each channel for specified timestep. This includes, water balance, nutrient balance, sediments.

- **basin wb_[tstep].txt** (where [tstep] is timestep – mon, day, yr, aa)
 This file shows the water balance of the entire catchment at the given timestep. This is important in checking potential problems with the model.

Challenge 4

Based on the basin wb yr.txt file.

- a) How much was the evapotranspiration in the year 1995?
- b) How much was the precipitation in the year 1995?
- c) How much was the surface runoff in the year 1997?

The following files (hru-data.hru, landuse.lum, plant.ini and management.sch) are important to understand the land use, crops and management practices in watershed.
- **hru-data.hru**
 This file contains a list of all HRUs and their properties such as soil and landuse management. The landuse management codes (e.g. agrl_lum) are listed in the file, landuse.lum.

- **landuse.lum**
 This file provides more information on the landuse management practices assigned to each HRU in the hru-data.hru. Note that it also lists plant communities (column 3) for each management practice.

 Based on the files, hru-data.hru and landuse.lum, channel_sd_mon.txt.

 a) What is the conservation practice for HRU 43?
 b) Plot flow for the main outlet against the observation data at monthly timestep? (save it in an excel file for use later)

- **plant.ini**
 This file lists plant communities. A plant community comprises of plants that grow together in the same area. This file also has the state of each of the listed plants at the beginning of the simulation. This file, along with management.sch, can be used to specify mixed cropping and crop rotation patterns.

- **management.sch**
 Management.sch shows a sequence of operations in each schedule. The operations are either listed in the file or a reference to lum.dtl.

- **decision table files (files ending with ‘.dtl’)**
 Decision tables list sets of actions that take place in the model when specific conditions are met (Figure 33). This gives the user more flexibility when timing operations in the model such as reservoir release.

 To better understand the structure of decision tables in SWAT+ refer to Figure 34. The decision table can be visualised as having 4 quadrants.

 1. Conditions
 2. Alternatives
 3. Action Entries
 4. Actions

 ![Figure 33: Decision table extract](image)
 ![Figure 34: Quadrants of a decision table](image)
Quadrant 1 has conditions which is a list of variables, objects and specified limits. For example, referring to Figure 33, the first condition can be broken down as follows:

```
soil_water   hru   0   fcap_fr    *   0.90000
```

You can read the above condition as:

“If the soil_water in current hru is [alternative comes here] (fcap_fr * 0.9)’’

As you can see, the above condition is incomplete without an alternative.

Quadrant 2 lists alternatives such as ‘=’, ‘>’, ‘<’, e.t.c. From Figure 33, there is one alternative: ‘<’

The condition now reads:

“If the soil_water in current hru is less than (fcap_fr * 0.9)”

Quadrant 3 shows which actions are performed when the condition is satisfied. ‘y’ means the current action gets performed if the condition is satisfied. The actions are listed in Quadrant 4. In this example, once the condition is satisfied, crops in the current HRU are going to be harvested (harvest_kill).

7. Calibration

i. Manual Calibration

Unlike in the previous version of SWAT (SWAT 2012), only one file is used and changed during the calibration of parameters. The default name of this file is calibration.cal and it has to be listed in the file.cio in order to have the parameters applied before running the model.

SWAT+ Editor can be used in conjunction with QSWAT interface to perform manual calibration. Parameters can be added or changed in the Hard Calibration under Change Section and plots can be made in QSWAT after importing results. Remember that NSE is automatically calculated when you plot simulated and observed flows. This can be used to evaluate the progress of the calibration process. Complete Task 14 to change a parameter for the model.

1. Select Hard Calibration under Change section and click Create New Record
2. Enter cn2 in Calibration Parameter, Select Change the value by specified percent under Type of Change, Enter 12 as Value of Change.
3. Click Save Changes, Do not select any HRUs. This means that the parameter will be changed in all HRUs, Click Back and Back again.
4. Write the files. You can now check the new file calibration.cal inside the TxtInOut directory with the parameter we added. It has also been listed in the file.cio
5. Run the model and import results ready for visualisation.
6. Plot the flows for the main outlet before and after parameter change on the same plot as the observed flows.
You can specify more conditions for an object to be calibrated. For example, you can set the parameter change to only be applied to HRUs that have \texttt{frst_lum}.

\textbf{ii. Soft Calibration}

For calibrating flows, hard calibration focuses on getting simulated and observed hydrographs as close as possible. However, soft calibration focuses on mass balance. Thus, it focuses on matching the components of the hydrological cycle to observed long term averages. For more information on soft calibration, refer to the SWAT+ Editor manual.

\textbf{iii. Automatic Calibration with IPEAT+}

SWAT+ is relatively new and as discussed in the introduction, there are not many tools available for calibration and checking for potential errors. IPEAT+ is one of the first calibration tools created for calibrating SWAT+ models. The IPEAT+ interface has 5 main steps that are shown on the navigation pane on the left of the main window. On start-up, the project page is selected (Figure 36). This is where you start.

To begin, download and Install IPEAT+ from http://download.snippet-code.com/ipeat_plus.zip

We will now perform automatic calibration of the robit model Using IPEAT+.
Create Project
To perform calibration using IPEAT+, we will need to create a project. Task 15, takes us through the process.

1. Open IPEAT+ interface (Figure 36).
2. Click on New Project.
3. Click Browse and select the TxtInOut directory, click Ok
4. Enter robit_model as project name and Click Save. A Save as window will appear.
5. Browse to the desktop and click Save to save the project.
6. A message confirming that the project has been created successfully will briefly appear at the bottom of the main window.

Add Parameters
In Task 16. We will add parameters.

1. Click Next to navigate to Edit Parameters window
2. Check cn2, esco and alpha and enter limits and change types shown in Figure 37. Note that you can add any parameter that is not listed on the Edit Parameters Page by clicking More Parameters.
3. Click Save and click Next
Add Observation Data

IPEAT+ accepts observations in CSV format with date and value fields. Dates should be in dd/mm/yyyy format and any negative number represents missing data. Task 17 will get us through adding monthly observation data for calibration.

- **Add Observation Data**
 - IPEAT+ accepts observations in CSV format with date and value fields. Dates should be in dd/mm/yyyy format and any negative number represents missing data. Task 17 will get us through adding monthly observation data for calibration.

![Image](image_url)

Figures 38: Adding Observation File for Channel 1

1. **On the Observation Data page, leave Reach as the Object Type (Figure 38).**
2. The observations we have are for channel 1, which is the main outlet channel. Enter channel number 1.
3. Leave Observation Type as flow and click the browse button.
4. Select observedFlow.csv and click Open.
5. Click Save.

IPEAT+ will read the observation data into memory.

- **Set Calibration Settings and Run Calibration**
 - To perform automatic calibration, objective functions such as the Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determination (R²) are used. IPEAT+ allows the use of one of the 5 objective functions as shown in Figure 39. Other settings that need to be specified include calibration period and timestep of calibration data. Complete Task 18 to set calibration settings.
During Calibration, IPEAT+ shows the progress of the calibration in real time (Figure 40).

Figure 39: Calibration Settings page

Figure 40: IPEAT+ shows calibration progress in real time.
8. Answers to Challenges

i. **Challenge 1:**
 a) There are 2 HRUs in LSU 501
 b) FRST and AGRL cover 1.79% and 88.93% of the watershed respectively
 c) 0%-10% slope class
 d) AGRL

ii. **Challenge 2:**
 a) past (➔ Pasture)

iii. **Challenge 3:**
 a) 11 years
 b) No, because warm up period was set to 3 years.
 c) 3 years
 d) Channel 1

iv. **Challenge 4:**
 a) 508.59 mm
 b) 1175.8 mm
 c) 535.36 mm

v. **Challenge 5:**
 a) cross_slope