

Influence of rainfall data scarcity on non-point source pollution prediction

Reporter: Cheng Sun Superviser: Zhenyao Shen, Lei Chen Institution: Beijing Normal University, China

Non-point source (NPS) pollution has been a key threat to water quality

Dispersiveness and Stealthiness Randomness and Uncertainty Universality and Undetectability

Soil and Water Assessment Tool (SWAT) models are the main tool used to quantify NPS pollution

Meteorological data DEM Land use data Soil type data Act as the driving force of runoff generation and pollutant transportation

Typical data scarcity are divided into three categories

- Daning River watershed is a significant tributary of the Three Gorges Reservoir area and is located in Wushan and Wuxi Counties in the municipality of Chongqing, China.
- It suffers from severe NPS pollution, and phosphorus is the limiting nutrient causing eutrophication.

	Data types	Resolution	Acquisition path
Di	gital Elevation Model (DEM)	1:250000	National Fundamental Geographic Information Center of China.
	land use map	1:100000	Resources and Environment science data Center of the Chinese Sciences Academy
	Soil type map	1:1000000	Agricultural Science Committee of Wuxi city
	Hydrologic data	Daily and monthly	Meteorological Bureau of Wuxi County and China National Meteorological Administration
	Meteorological data	Daily and monthly	Meteorological Bureau of Wuxi County

Method

Methods

Database establishment

•DEM

•Land use data

•Soil type data

•Meteorological data

Calibration and verification

•TP

•Flow

Multiple

imputation

•Data augmentation (DA) algorithm •Expectation maximization with bootstrap (EMB) algorithms

Setup of SWAT model

•Correlation coefficient R²

•Nash-Sutcliffe coefficient (Ens)

•Information entropy method

Analysis of scarce scenario

- Temporal data scarcity
- Spatial data scarcity

Methods Model description

simulate six P pools in the soil

$$P_{surf} = 0.001 \times C_{orgP} \cdot \frac{Q_{sed}}{A_{hru}} \cdot \varepsilon_{P:sed}$$
$$Q_{sed} = 11.8 (Q_{surf} \cdot q_{peak} \cdot A_{hru})^{0.56} \cdot K_{ulse} \cdot C_{ulse} \cdot P_{ulse} \cdot L_{ulse} \cdot F_{CFRG}$$

Markov Chain - skewed distribution model to simulate daily rainfall data

$$R_{day} = \mu_{mon} + 2\sigma_{mon} \frac{\left[\left(SND_{day} - \frac{g_{mon}}{6}\right)\left(\frac{g_{mon}}{6}\right) + 1\right]^3 - 1}{g_{mon}}$$

Methods

Calibration and verification

Sequential Uncertainty Fitting Version-2 (SUFI-2)

Monthly time step, one-year warm-up period

Calibration period:2004-2008 Validation period: 2000-2003

Verification point: 13 subbasin outlet

ITEMS	NUM	PARAMETER	INFERIOR LIMIT	UPPER LIMIT
	1	Sol_Awc	0	1
	2	Sol_K	-20	30000
	3	Esco	0	1
	4	Gwqmn	0	5000
	5	Cn2	-25	19
	6	Canmx	0	10
	7	Sol_Z	-25	25
FLOW	8	Blai	0	1
	9	Ch_K2	0	150
	10	Surlag	0	10
	11	Gw_Delay	1	45
	12	Ch_N2	0	1
	13	Epco	0	1
	14	Revapmn	0	500
	15	Biomix	0	1
	1	Spcon	0.0001	0.05
	2	Ch_Cov	0	1
SEDIMENT	3	Ch_Erod	0	1
	4	Usle_P	0	1
	5	Spexp	1	1.5
	1	Sol_Orgp	0	400
	2	Pperco	10	18
ТР	3	Phoskd	100	200
	4	Rchrg_Dp	0	1
	5	Sol Labp	-25	25

Methods

Evaluation indicators

1 The correlation coefficient R²: $R^{2} = \left[\left(\sum_{i=1}^{n} (O_{i} - \overline{O})(P_{i} - \overline{P}) \right) / \left(\sqrt{\sum_{i=1}^{n} (O_{i} - \overline{O})} \sqrt{\sum_{i=1}^{n} (P_{i} - \overline{P})^{2}} \right) \right]^{2}$

② The Nash-Sutcliffe coefficient (Ens):

 $Ens = 1 - \sum_{i=1}^{n} (O_i - P_i)^2 / \sum_{i=1}^{n} (O_i - \overline{O})^2$

③ Information entropy method:

$$H_{spatial}(x_j) = -\sum_{i=1}^{n} P(x_{ij}) log P(x_{ij})$$
$$H_{temporal}(x_i) = -\sum_{j=1}^{m} P(x_{ij}) log P(x_{ij})$$
Simulation period Data type $R^2 = E_{NS}$

Simulation period	Data type	K	ENS
2000 01 2009 1	Flow	0.79	0.74
2000.01-2008.1	TP	0.95	0.93

Methods Temporal data scarcity (in the Xining station)

Methods Spatial data scarcity

The location of a removed rainfall stations

Number of gauges	Scarce gauges	Information etropy
9 gauges	-	1.9145
8 gauges	Xining station	1.5507
7 gauges	Changan and Xujiaba stations	1.4125
5 gauges	Changan, Xujiaba, Wangu and Zhongliang stations	1.2462
4 gauges	Changan, Xujiaba, Wangu, Zhongliang and Gaolou stations	1.0460
3 gauges	Changan, Xujiaba, Wangu, Zhongliang, Gaolou and Tangfang stations	0.8804

Methods Design of rainfall data scarcity

The experimental design of rainfall data scarcity scenario.

Category		Name	Detailed description
Baseline		SO	No scarce data scenarios (no lack of time series and also retained a complete nine stations)
Spatial data scarcity	Decreasing number of rainfall stations	S1	An 8-gauge scenario that lacked the Xining station
ak ad	U U	S2	A 7-gauge scenario that lacked the Changan and Xujiaba stations
		S 3	A 5-gauge scenario that lacked the Changan, Xujiaba, Wangu and
			Zhongliang stations
		S 4	A 4-gauge scenario that lacked the Changan, Xujiaba, Wangu,
			Zhongliang and Gaolou stations
		S 5	A 3-gauge scenario that lacked the Changan, Xujiaba, Wangu,
			Zhongliang, Gaolou and Tangfang stations
	Effect of the location of a removed rainfall stations	S6	A scenario with 6 stations that lacked the Gaolou station
		S7	A scenario with 6 stations that lacked the Jianlou station
		S8	A scenario with 6 stations that lacked the Tangfang station
		S 9	A scenario with 6 stations that lacked the Wangu station
		S10	A scenario with 6 stations that lacked the Wuxi station
		S11	A scenario with 6 stations that lacked the Xining station
		S12	A scenario with 6 stations that lacked the Zhongliang station
Temporal data scarcity (in the Xining	Rainfall time series degradation with increasing	S13	A scenario with 10% data scarcity
station)	missing period	S14	A scenario with 20% data scarcity
		S15	A scenario with 30% data scarcity
		S16	A scenario with 40% data scarcity
		S17	A scenario with 50% data scarcity
		S18	A scenario with 60% data scarcity
	Rainfall time series degradation with variable timing	S19	Pattern 1 with data scarcity in the high flow year of 2000
	of the missing period	S20	Pattern 2 with data scarcity in the normal flow year of 2002
		S21	Pattern 3 with data scarcity in the low flow year of 2004
		S22	Pattern 4 with data scarcity in the high flow year of 2005
		S23	Pattern 5 with data scarcity in the high flow year of 2007

Methods Multiple imputation (DA)

The DA algorithm is an iterative optimization and sampling algorithm method that introduces latent variables.

Methods Multiple interpolation (EMB)

The EMB algorithm is a combination of the EM algorithm and the bootstrap method.

Impacts of temporal data scarcity (missing rates)

Evaluation of the simulation results for the different temporal data scarcities.

	No missing	ng Different missing rates						
		10%	20%	30%	40%	50%	60%	
Ens	0.7425	0.6054	0.5457	0.5677	0.5366	0.5693	0.5494	
R^2	0.786	0.662	0.611	0.649	0.612	0.641	0.633	
ΔH		3.7115	6.0821	8.2601	11.7208	14.3642	15.508	
Ens	0.9299	0.8655	0.8711	0.8242	0.8615	0.8613	0.7515	
\mathbb{R}^2	0.952	0.933	0.932	0.905	0.928	0.914	0.794	
ΔH		5.9542	9.2635	11.5274	16.8487	20.6244	21.3764	
	Ens R ² ΔH Ens R ² ΔH	No missing Ens 0.7425 R ² 0.786 ΔH Ens 0.9299 R ² 0.952 ΔH	No missing Different 10% 10% Ens 0.7425 0.6054 R ² 0.786 0.662 ΔH 3.7115 Ens 0.9299 0.8655 R ² 0.952 0.933 ΔH 5.9542	No missing Different missing rates 10% 20% Ens 0.7425 0.6054 0.5457 R ² 0.786 0.662 0.611 ΔH 3.7115 6.0821 Ens 0.9299 0.8655 0.8711 R ² 0.952 0.933 0.932 ΔH 5.9542 9.2635	No missing Different missing rates 10% 20% 30% Ens 0.7425 0.6054 0.5457 0.5677 R ² 0.786 0.662 0.611 0.649 ΔH 3.7115 6.0821 8.2601 Ens 0.9299 0.8655 0.8711 0.8242 R ² 0.952 0.933 0.932 0.905 ΔH 5.9542 9.2635 11.5274	No missing Different missing rates 10% 20% 30% 40% Ens 0.7425 0.6054 0.5457 0.5677 0.5366 R ² 0.786 0.662 0.611 0.649 0.612 ΔH 3.7115 6.0821 8.2601 11.7208 Ens 0.9299 0.8655 0.8711 0.8242 0.8615 R ² 0.952 0.933 0.932 0.905 0.928 ΔH 5.9542 9.2635 11.5274 16.8487	No missing Different missing rates 10% 20% 30% 40% 50% Ens 0.7425 0.6054 0.5457 0.5677 0.5366 0.5693 R ² 0.786 0.662 0.611 0.649 0.612 0.641 ΔH 3.7115 6.0821 8.2601 11.7208 14.3642 Ens 0.9299 0.8655 0.8711 0.8242 0.8615 0.8613 R ² 0.952 0.933 0.932 0.905 0.924 0.914 ΔH 5.9542 9.2635 11.5274 16.8487 20.6244	

- ΔH_{temporal} increased with increasing missing rates;
- At the same missing rate, the ΔH_{temporal} for flow and TP simulations were consistent;
- The $\Delta H_{\text{temporal}}$ in TP was larger than the flow.

(a)

Impacts of temporal data scarcity (scarcity locations)

(b)

		No missiong	Different data location scarcity				
			Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5
Flow	Ens	0.7425	0.6871	0.7287	0.7342	0.6573	0.6103
	R	0.7860	0.7410	0.7780	0.7870	0.7140	0.6670
	${}^{\rm A}{\rm H}$		2.0351	2.5275	1.7184	3.6907	3.9754
TP	Ens	0.9299	0.9329	00.9137	0.9289	0.4339	0.8514
	R	0.9520	0.9540	0.9340	0.9610	0.5510	0.9250
	${\scriptstyle riangle} H$		4.0201	4.0038	3.0790	5.7503	6.5524

These corresponding years are 2000, 2005, and 2007, which were high flow years.

- pattern 3pattern 4pattern 3 – pattern 5 pattern 5-Time (2000.01-2008.12) Time (2000.01-2008.12
- The ΔH_{temporal} increased if data in high flow years were missing, and the model performance become poor;
- The $\Delta H_{temporal}$ for TP was obviously greater than the $\Delta H_{temporal}$ for flow.

Results Impacts of spatial data scarcity (station number and location)

Evaluation of the simulation effects for the different combinations of rainfall stations.

	Evaluation indicators	9-gauge	8-gauge	5-gauge	4-gauge	3-gauge
Flow	ENS R ² ΔH	0.7425 0.786	0.5729 0.638 22.5170	0.7308 0.771 9.1101	0.6273 0.676 16.9243	0.6023 0.66 25.4811
Total phosphorus	ENS R ² ΔH	0.9299 0.952	0.6928 0.867 32.4108	0.8299 0.947 29.6263	0.7415 0.943 37.0232	0.742 0.94 47.7475

- lacked the main site reduced the total set of information by approximately 25%;
- The fewer gauges, the worse simulation results.

• For missing gauges with high information entropy, the simulated TP outputs changed dramatically .

Results Impacts of spatial data scarcity (station number and location)

 The ΔH_{spatial} for the 7th sub-watershed and its other downstream subwatersheds such as 9th sub-watershed increased during S1 scenario (scarcity of the Xining station).

Impacts of spatial data scarcity (downstream simulations)

Seven gauges with complete data

Results

Seven scarce scenarios of gauge

The impact of single gauge

(b) TP

Impacts of different imputation methods on rainfall data series

The imputation ef	The imputation effects of rainfall data at six missing rates							
Missing rates	DA	EMB						
None missing	106.50	106.50						
10%	72.19	97.28						
20%	65.33	94.96						
30%	61.51	93.65						
40%	63.43	86.31						
50%	58.10	87.92						
60%	58.31	90.67						

- The distribution of imputations is consistent with the distribution of observations;
- When the relative density of observations exceeded 1.5, the relative density of the imputations could be below 0.5;
- The 90% confidence interval of the imputed values is able to cover this theoretical line at different missing rates.

Pattern 2: normal-flow year Pattern 3: low-flow year Pattern 4: high-flow year Pattern 5: high-flow year

Missing rates

Impacts of different imputation data sets on NPS pollution simulations

		T 1 1			-		-		
		Evaluation indicators	None missing	10%	20%	30%	40%	50%	60%
	E1	NSE	0.74	0.61	0.55	0.57	0.54	0.57	0.55
	Flow	\mathbb{R}^2	0.79	0.66	0.61	0.65	0.61	0.64	0.63
Before imputation	TP	NSE	0.93	0.87	0.87	0.82	0.86	0.86	0.75
		\mathbb{R}^2	0.95	0.93	0.93	0.90	0.93	0.91	0.79
	F1	NSE	0.74	0.69	0.61	0.58	0.58	0.57	0.56
	Flow	\mathbb{R}^2	0.79	0.75	0.69	0.68	0.68	0.69	0.69
After imputation	TP	NSE	0.93	0.86	0.85	0.85	0.84	0.82	0.80
		\mathbb{R}^2	0.95	0.92	0.92	0.89	0.91	0.91	0.93

- The estimated effect of the imputed data set of the flow and the TP loads with different missing rates improved;
- The imputation effect of rainfall data is less affected by the changes in missing rates;

Missing positions

Impacts of different imputation data sets on NPS pollution simulations

		Evaluation indicators	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5
	-	NSE	0.69	0.73	0.73	0.66	0.61
	Flow	\mathbb{R}^2	0.74	0.78	0.79	0.71	0.67
Before imputation	TP	NSE	0.93	0.91	0.93	0.43	0.85
		\mathbb{R}^2	0.95	0.93	0.96	0.55	0.93
	-	NSE	0.71	0.74	0.74	0.69	0.67
	Flow	\mathbb{R}^2	0.76	0.79	0.79	0.74	0.72
After imputation	TP	NSE	0.93	0.93	0.94	0.67	0.91
		\mathbb{R}^2	0.95	0.95	0.96	0.77	0.95

Model performance of the imputed values in different missing positions are also better than the simulation results before imputation;
The simulated values in the normal-flow years and the low-flow years are closer to the baseline values than are those in the high-flow years;

Conclusions

Conclusions

- The results highlighted the importance of critical-site rainfall stations (Xining station in this paper) on the SWAT simulations (for better rainfall spatial distribution);
- Higher missing rates above a certain threshold as well as missing locations during the wet periods resulted in poorer simulation results (for better temporal distribution).
- The repair of rainfall data and the SWAT model performance obtained by the EMB algorithm are superior to the traditional DA algorithm (weather generator).
- It is noted that even if the best algorithm is used, the imputed value is always lower than the peak observed value (multiple sources of rainfall data).

Chen et al., journal of hydrology, 2017; Chen et al., journal of hydrology, 2018;

END

THANK YOU FOR YOUR ATTENTION!